精英家教网 > 高中数学 > 题目详情

【题目】定义在(0, )上的函数f(x),f′(x)是它的导函数,且恒有f(x)>f′(x)tanx成立,则(
A.
B.
C.
D.

【答案】A
【解析】解:∵x∈(0, ),∴sinx>0,cosx>0,
由f(x)>f′(x)tanx,得f(x)cosx>f′(x)sinx.
即f′(x)sinx﹣f(x)cosx<0
构造函数g(x)=
则g′(x)= <0,
∴函数g(x)在x∈(0, ),上单调递减,


故选:A.
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)=x3+mlog2(x+ )(m∈R,m>0),则不等式f(m)+f(m2﹣2)≥0的解是 . (注:填写m的取值范围)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)已知函数fx=

1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.

2)求该函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:

其中 x 是仪器的月产量.

(1)将利润表示为月产量 的函数;

(2)当月产量 为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时, .现已画出函数轴左侧的图象,如图所示,并根据图象:

(1)直接写出函数 的增区间;

(2)写出函数 的解析式;

(3)若函数 ,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线经过点

(1)讨论函数的单调性;

(2)若不等式恒成立,求实数的取值范围.

【答案】(1)单调递减;(2)

【解析】试题分析: (1)利用导数几何意义,求出切线方程,根据切线过点,求出函数的解析式; (2)由已知不等式分离出,得,令,求导得出 上为减函数,再求出的最小值,从而得出的范围.

试题解析:(1)

设切点为

代入

单调递减

(2)恒成立

单调递减

恒大于0

点睛: 本题主要考查了导数的几何意义以及导数的应用,包括求函数的单调性和最值,属于中档题. 注意第二问中的恒成立问题,等价转化为求的最小值,直接求的最小值比较复杂,所以先令,求出在 上的单调性,再求出的最小值,得到的范围.

型】解答
束】
22

【题目】已知是椭圆的两个焦点, 为坐标原点,圆是以为直径的圆,一直线与圆相切并与椭圆交于不同的两点.

(1)求关系式;

(2)若,求直线的方程;

(3)当,且满足时,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x单位:小时)与当天投篮命中率y之间的关系:

时间x

1

2

3

4

5

命中率y

0.4

0.5

0.6

0.6

0.4


(1)求小李这5天的平均投篮命中率;
(2)用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是递增的等差数列, 是方程的根.

()的通项公式;

()求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若三个数a,1,c成等差数列(其中a≠c),且a2 , 1,c2成等比数列,则 的值为

查看答案和解析>>

同步练习册答案