精英家教网 > 高中数学 > 题目详情
11.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x-y-1≤0}\\{x+y-a≥0}\end{array}\right.$,目标函数z=2x+y的最小值为-5,则实数a=(  )
A.-1B.-3C.3D.5

分析 作出不等式组对应的平面区域,利用目标函数z=2x+y的最小值为-5,建立条件关系即可求出k的值.

解答 解:目标函数z=2x+y的最小值为-5,
∴y=-2x+z,要使目标函数z=2x+y的最小值为-5,
则平面区域位于直线y=-2x+z的右上方,可以求得2x+y=-5,
作出变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x-y-1≤0}\\{x+y-a≥0}\end{array}\right.$,
对应的平面区域如图:
则目标函数经过点A,
由$\left\{\begin{array}{l}{2x+y=-5}\\{x-y+1=0}\end{array}\right.$,解得A(-2,-1),
同时A也在直线x+y-a=0上,
即-2-1-a=0,
解得a=-3,
故选:B.

点评 本题主要考查线性规划的应用,根据目标函数z=2x+y的最小值为-5,确定平面区域的位置,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.不等式|x-3|+|x-2|≥3的解集是(  )
A.{x|x≥3或x≤1}B.{x|x≥4或x≤2}C.{x|x≥2或x≤1}D.{x|x≥4或x≤1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知A,B,C三点都在体积为$\frac{500π}{3}$的球O的表面上,若$AB=4\sqrt{3}$,∠ACB=60°,则球心O到平面ABC的距离为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在△ABC中,D,E分别为BC,AB的中点,F为AD的中点.
(1)试用$\overrightarrow{AB}$,$\overrightarrow{AC}$表示$\overrightarrow{CE}$,$\overrightarrow{AF}$;
(2)若AB=2,AC=1,∠BAC=60°,求$\overrightarrow{AB}$$•\overrightarrow{AC}$,$\overrightarrow{CE}$$•\overrightarrow{AF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平面区域{x,y)|x|≤1,|y|≤1}上恒有ax-2by≤2,则动点P(a,b)所形成平面区域的面积为(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线$\sqrt{3}$x+y+1=0的倾斜角为(  )
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)是R上的增函数,它的图象经过点A(0,-2),B(3,2),则不等式|f(x+1)|≥2的解集为(  )
A.[-1,2]B.(-∞,-1)C.[2,+∞)D.(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设直线3x-2y-12=0与直线4x+3y+1=0交于点M,若一条光线从点P(3,2)射出,经y轴反射后过点M,则人射光线所在的直线方程为(  )
A.x-y-1=0B.x-y+1=0C.x-y-5=0D.x+y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(1-2a)lnx+ax+$\frac{2}{x}$,其中a∈R.
(1)若a<0,试讨论f(x)的单调性;
(2)记函数g(x)=f(x)+(2a-3)lnx-$\frac{3a+4}{x}$,若g(x)在区间[1,4]上不单调,求实数a的取值范围.

查看答案和解析>>

同步练习册答案