精英家教网 > 高中数学 > 题目详情
16.直线$\sqrt{3}$x+y+1=0的倾斜角为(  )
A.150°B.120°C.60°D.30°

分析 求得直线的斜率,运用直线的斜率公式,由倾斜角的范围,即可得到所求角.

解答 解:直线$\sqrt{3}$x+y+1=0即为
y=-$\sqrt{3}$x-1,
可得直线的斜率为k=-$\sqrt{3}$,
设倾斜角为α,
可得tanα=-$\sqrt{3}$,
由0°<α<180°,
可得α=120°,
故选:B.

点评 本题考查直线的倾斜角的求法,注意运用直线的斜率公式以及倾斜角的范围,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知抛物线y2=2px(p>0)的准线经过点(-1,4),过抛物线的焦点F且与x轴垂直的直线交该抛物线于M、N两点,则|MN|=(  )
A.4B.$2\sqrt{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.从一个正方形中截去部分几何体,得到一个以原正方形的部分顶点的多面体,其三视图如图,则该几何体的体积为9,表面积为$\frac{27+18\sqrt{2}+9\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\frac{(x+1)(x+a)}{x^3}$为奇函数,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x-y-1≤0}\\{x+y-a≥0}\end{array}\right.$,目标函数z=2x+y的最小值为-5,则实数a=(  )
A.-1B.-3C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=ln$\frac{2+x}{2-x}$判断并证明函数的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设M是?ABCD的对角线的交点,三角形ABD的高AP为2,O为任意一点,则($\overrightarrow{OB}$+$\overrightarrow{OC}$+$\overrightarrow{OD}$-3$\overrightarrow{OA}$)•($\overrightarrow{OP}$-$\overrightarrow{OA}$)=(  )
A.6B.16C.24D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知{an}是各项均为正数的等比数列,{bn}是等差数列,且a1=b1=1,b2+b3=2a3,a5-2b2=7.
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)设Cn=anbn,n∈N*,求数列{Cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若复数z满足z(1+i)=2i,则|z|等于(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案