精英家教网 > 高中数学 > 题目详情
4.函数f(x)=$\frac{(x+1)(x+a)}{x^3}$为奇函数,则a=-1.

分析 由题意可得f(-x)=-f(x),由此求得a的值.

解答 解:∵函数f(x)=$\frac{(x+1)(x+a)}{x^3}$为奇函数,
故有f(-x)=$\frac{(-x+1)(-x+a)}{{(-x)}^{3}}$=$\frac{(x-1)(x-a)}{{-x}^{3}}$=-f(x)=-$\frac{(x+1)(x+a)}{{x}^{3}}$,
即 (x-1)(x-a)=(x+1)(x+a),
即x2-(a+1)x+a=x2+(a+1)x+a,∴a+1=0,∴a=-1,
故答案为:-1.

点评 本题主要考查奇函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数y=f(x)的导函数为f'(x)=cosx-5,且f(0)=0,如果f(1-ax)+f(1-ax2)<0恒成立,则实数a的取值范围是(-8,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=$\overrightarrow a•\overrightarrow b$,其中$\overrightarrow a=(2cosx,-\sqrt{3}sin2x),\overrightarrow b=(cosx,1),x∈R$.
(1)求f(x)的最小正周期;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=-1,a=$\frac{{\sqrt{7}}}{2}$,且向量$\overrightarrow m=(3,sinB)$与$\overrightarrow n=(2,sinC)$共线,求边长b和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,α-MN-β为120°,O∈MN,a∈β,B∈α.∠BON=∠AOM=45°,$OA=OB=\sqrt{2}$,则AB=(  )
A.$\sqrt{5}$B.$2\sqrt{3}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在△ABC中,D,E分别为BC,AB的中点,F为AD的中点.
(1)试用$\overrightarrow{AB}$,$\overrightarrow{AC}$表示$\overrightarrow{CE}$,$\overrightarrow{AF}$;
(2)若AB=2,AC=1,∠BAC=60°,求$\overrightarrow{AB}$$•\overrightarrow{AC}$,$\overrightarrow{CE}$$•\overrightarrow{AF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=log2x-2-x,g(x)=log${\;}_{\frac{1}{2}}$x-2x的零点分别为x1,x2,则下列结论正确的是(  )
A.0<x1x2<1B.x1x2=1C.1<x1x2<2D.x1x2≥2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线$\sqrt{3}$x+y+1=0的倾斜角为(  )
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知F1,F2是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左,右焦点,离心率为$\frac{1}{2}$,M、N是平面内两点,满足$\overrightarrow{{F}_{1}M}$=-2$\overrightarrow{M{F}_{2}}$,线段NF1的中点P在椭圆上,△F1MN周长为12
(1)求椭圆C的方程;
(2)若过(0,2)的直线l与椭圆C交于A、B,求$\overrightarrow{OA}$$•\overrightarrow{OB}$(其中O为坐标原点)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,1),$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,则cosθ=(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{\sqrt{10}}{5}$D.$\frac{\sqrt{15}}{5}$

查看答案和解析>>

同步练习册答案