13£®ÒÑÖªF1£¬F2ÊÇÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó£¬ÓÒ½¹µã£¬ÀëÐÄÂÊΪ$\frac{1}{2}$£¬M¡¢NÊÇÆ½ÃæÄÚÁ½µã£¬Âú×ã$\overrightarrow{{F}_{1}M}$=-2$\overrightarrow{M{F}_{2}}$£¬Ïß¶ÎNF1µÄÖеãPÔÚÍÖÔ²ÉÏ£¬¡÷F1MNÖܳ¤Îª12
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Èô¹ý£¨0£¬2£©µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA¡¢B£¬Çó$\overrightarrow{OA}$$•\overrightarrow{OB}$£¨ÆäÖÐOÎª×ø±êÔ­µã£©µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÈçͼËùʾ£¬ÓÉ$\overrightarrow{{F}_{1}M}$=-2$\overrightarrow{M{F}_{2}}$£¬¿ÉµÃµãF2ÊÇÏß¶ÎF1NµÄÖе㣮ÓÖÏß¶ÎNF1µÄÖеãPÔÚÍÖÔ²ÉÏ£¬¿ÉµÃÏß¶ÎPF2ÊÇ¡÷F1MNµÄÖÐλÏߣ®ÓÉÍÖÔ²¶¨Òå¼°ÆäÈý½ÇÐÎÖÐλÏß¶ÀÁ¢¼°Æä¡÷F1MNÖܳ¤Îª12£¬¿ÉµÃ4a+4c=12£¬ÓÖ$\frac{c}{a}$=$\frac{1}{2}$£¬a2=b2+c2£¬ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£®
£¨2£©µ±Ö±Ïßl¡ÍxÖáʱ£¬$\overrightarrow{OA}$$•\overrightarrow{OB}$=-b2=-3£®µ±Ö±ÏßlÓëxÖá²»´¹Ö±Ê±£¬ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=kx+2£®A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£º£¨3+4k2£©x2+16kx+4=0£¬¡÷£¾0£¬»¯Îª£ºk2£¾$\frac{1}{4}$£®ÀûÓÃÒ»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¼°ÆäÊýÁ¿»ýÔËËãÐÔÖʿɵÃ$\overrightarrow{OA}$$•\overrightarrow{OB}$=-3+$\frac{25}{3+4{k}^{2}}$£¬½ø¶øµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©ÈçͼËùʾ£¬¡ß$\overrightarrow{{F}_{1}M}$=-2$\overrightarrow{M{F}_{2}}$£¬¡àµãF2ÊÇÏß¶ÎF1NµÄÖе㣬
ÓÖÏß¶ÎNF1µÄÖеãPÔÚÍÖÔ²ÉÏ£¬¡àÏß¶ÎPF2ÊÇ¡÷F1MNµÄÖÐλÏߣ®
¡ß|PF1|+|PF2|=2a£¬¡à|NF1|+|NM|=4a£®
ÓÖ¡÷F1MNÖܳ¤Îª12£¬¡à4a+4c=12£¬
»¯Îª£ºa+c=3£¬ÓÖ$\frac{c}{a}$=$\frac{1}{2}$£¬a2=b2+c2£¬
½âµÃa=2£¬c=1£¬b2=3£®
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£®
£¨2£©µ±Ö±Ïßl¡ÍxÖáʱ£¬$\overrightarrow{OA}$$•\overrightarrow{OB}$=-b2=-3£®
µ±Ö±ÏßlÓëxÖá²»´¹Ö±Ê±£¬ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=kx+2£®A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+2}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬»¯Îª£º£¨3+4k2£©x2+16kx+4=0£¬
¡÷=256k2-16£¨3+4k2£©£¾0£¬»¯Îª£ºk2£¾$\frac{1}{4}$£®
½âµÃ$k£¾\frac{1}{2}$£¬»òk$£¼-\frac{1}{2}$£®
¡àx1+x2=-$\frac{16k}{3+4{k}^{2}}$£¬x1x2=$\frac{4}{3+4{k}^{2}}$£®
¡à$\overrightarrow{OA}$$•\overrightarrow{OB}$=x1x2+y1y2=x1x2+£¨kx1+2£©£¨kx2+2£©
=£¨1+k2£©x1x2+2k£¨x1+x2£©+4
=£¨1+k2£©¡Á$\frac{4}{3+4{k}^{2}}$-2k¡Á$\frac{16k}{3+4{k}^{2}}$+4
=$\frac{16-12{k}^{2}}{3+4{k}^{2}}$=-3+$\frac{25}{3+4{k}^{2}}$£¬
¡ß$k£¾\frac{1}{2}$£¬»òk$£¼-\frac{1}{2}$£®
¡à$\overrightarrow{OA}$$•\overrightarrow{OB}$¡Ê$£¨-3£¬\frac{13}{4}£©$£®
×ÛÉϿɵãº$\overrightarrow{OA}$$•\overrightarrow{OB}$¡Ê$[-3£¬\frac{13}{4}£©$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ¶¨Òå±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Èý½ÇÐÎÖÐλÏß¶¨Àí¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢ÏòÁ¿ÊýÁ¿»ýÔËËãÐÔÖÊ¡¢·ÖÀàÌÖÂÛ·½·¨¡¢º¯ÊýÓë²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®µ±x¡Ê[0£¬¦Ð]ʱ£¬º¯Êýy=sin£¨$\frac{¦Ð}{2}$-x£©+sin£¨¦Ð-x£©×î´óÖµÓë×îСֵµÄ»ýÊÇ$-\frac{\sqrt{2}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®º¯Êýf£¨x£©=$\frac{£¨x+1£©£¨x+a£©}{x^3}$ÎªÆæº¯Êý£¬Ôòa=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªf£¨x£©=ln$\frac{2+x}{2-x}$Åжϲ¢Ö¤Ã÷º¯ÊýµÄÆæÅ¼ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÉèMÊÇ?ABCDµÄ¶Ô½ÇÏߵĽ»µã£¬Èý½ÇÐÎABDµÄ¸ßAPΪ2£¬OΪÈÎÒâÒ»µã£¬Ôò£¨$\overrightarrow{OB}$+$\overrightarrow{OC}$+$\overrightarrow{OD}$-3$\overrightarrow{OA}$£©•£¨$\overrightarrow{OP}$-$\overrightarrow{OA}$£©=£¨¡¡¡¡£©
A£®6B£®16C£®24D£®48

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑ֪ƽÐÐËıßÐÎABCDÖУ¬¡ÏABC=60¡ã£¬AB=1£¬BC=2£¬Ôò$\overrightarrow{BA}$$•\overrightarrow{BD}$=£¨¡¡¡¡£©
A£®1B£®2C£®1$+\sqrt{3}$D£®-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª{an}ÊǸ÷Ïî¾ùΪÕýÊýµÄµÈ±ÈÊýÁУ¬{bn}ÊǵȲîÊýÁУ¬ÇÒa1=b1=1£¬b2+b3=2a3£¬a5-2b2=7£®
£¨¢ñ£©Çó{an}ºÍ{bn}µÄͨÏʽ£»
£¨¢ò£©ÉèCn=anbn£¬n¡ÊN*£¬ÇóÊýÁÐ{Cn}µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªa£¬b¡ÊR£¬a¡Ù0£¬º¯Êýf£¨x£©=-$\sqrt{2}$£¨sinx+cosx£©+b£¬g£¨x£©=asinx•cosx+$\frac{a}{2}$+$\frac{1}{a}$+2£®
£¨1£©Èôx¡Ê£¨0£¬¦Ð£©£¬f£¨x£©=-$\frac{2\sqrt{5}}{5}$+b£¬Çósinx-cosxµÄÖµ£»
£¨2£©Èô²»µÈʽf£¨x£©¡Üg£¨x£©¶ÔÈÎÒâx¡ÊRºã³ÉÁ¢£¬ÇóbµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Ä³Ð£×ÔÖ÷ÕÐÉúÃæÊÔ¹²ÓÐ7µÀÌ⣬ÆäÖÐ4µÀÀí¿ÆÌ⣬3µÀÎÄ¿ÆÌ⣬ҪÇ󲻷ŻصØÒÀ´ÎÈÎÈ¡3µÀÌâ×÷´ð£¬Ôòij¿¼ÉúÔÚµÚÒ»´Î³éµ½Àí¿ÆÌâµÄÌõ¼þÏ£¬µÚ¶þ´ÎºÍµÚÈý´Î¾ù³éµ½ÎÄ¿ÆÌâµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{7}$B£®$\frac{1}{5}$C£®$\frac{3}{7}$D£®$\frac{4}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸