精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的焦距是2,离心率是0.5;
(1)求椭圆的方程;
(2)求证:过点A(1,2)倾斜角为45°的直线l与椭圆有两个不同的交点.
分析:(1)直接根据焦距是2,离心率是0.5;求出c=1,a=2,再根据a,b,c之间的关系求出b;即可求椭圆的方程;
(2)把直线方程和椭圆方程联立,转化为关于x的一元二次方程,只要对应的判别式大于0即可说明结论.
解答:解:(1)2c=2,∴c=1,…(2分)
c
a
=0.5
,得a=2,∴b=
a2-c2
=
3
.…(4分)
∴椭圆的方程为
x2
4
+
y2
3
=1
.    …(6分)
(2)直线l:y-2=tan45°(x-1),即y=x+1.…(8分)
代入
x2
4
+
y2
3
=1
,整理得:7x2+8x-8=0.…(10分)
∵△=82-4×7×(-8)=288>0…(11分)
∴过点A(1,2)倾斜角为450的直线l与椭圆有两个不同的交点.      …(12分)
点评:本题综合考查椭圆的性质及应用和直线与椭圆的位置关系,属于中档题目,解题时要注意性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,左顶点为A,若|F1F2|=2,椭圆的离心率为e=
1
2

(Ⅰ)求椭圆的标准方程,
(Ⅱ)若P是椭圆上的任意一点,求
PF1
PA
的取值范围
(III)直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的顶点),AH⊥MN垂足为H且
AH
2
=
MH
HN
,求证:直线l恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F(-c,0)是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线l交椭圆于C、D两点,记直线AD、BC的斜率分别为k1,k2
(1)当点D到两焦点的距离之和为4,直线l⊥x轴时,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率是
3
2
,且经过点M(2,1),直线y=
1
2
x+m(m<0)
与椭圆相交于A,B两点.
(1)求椭圆的方程;
(2)当m=-1时,求△MAB的面积;
(3)求△MAB的内心的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•威海二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
6
3
,过右焦点做垂直于x轴的直线与椭圆相交于两点,且两交点与椭圆的左焦点及右顶点构成的四边形面积为
2
6
3
+2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(0,2),直线l:y=1,过M任作一条不与y轴重合的直线与椭圆相交于A、B两点,若N为AB的中点,D为N在直线l上的射影,AB的中垂线与y轴交于点P.求证:
ND
MP
AB
2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F,过F作y轴的平行线交椭圆于M、N两点,若|MN|=3,且椭圆离心率是方程2x2-5x+2=0的根,求椭圆方程.

查看答案和解析>>

同步练习册答案