【题目】由9个正数组成的矩阵
中,每行中三个数成等差数列,且
、
、
成等比数列,给出下列判断:① 第2列中,
、
、
必成等比数列;② 第1列中的
、
、
不一定成等比数列;③
;④ 若9个数之和等于9,则
;其中正确的个数为( )
A.1B.2C.3D.4
科目:高中数学 来源: 题型:
【题目】省环保厅对
、
、
三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:
|
|
| |
优(个) | 28 |
|
|
良(个) | 32 | 30 |
|
已知在这180个数据中随机抽取一个,恰好抽到记录
城市空气质量为优的数据的概率为0.2.
(1)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在
城中应抽取的数据的个数;
(2)已知
,
,求在
城中空气质量为优的天数大于空气质量为良的天数的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,空间直角坐标系中,四棱锥
的底面是边长为
的正方形,且底面在
平面内,点
在
轴正半轴上,
平面
,侧棱
与底面所成角为45°;
![]()
(1)若
是顶点在原点,且过
、
两点的抛物线上的动点,试给出
与
满足的关系式;
(2)若
是棱
上的一个定点,它到平面
的距离为
(
),写出
、
两点之间的距离
,并求
的最小值;
(3)是否存在一个实数
(
),使得当
取得最小值时,异面直线
与
互相垂直?请说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知平面内一动点
到两个定点
、
的距离之和为
,线段
的长为
.
![]()
(1)求动点
的轨迹
的方程;
(2)过点
作直线
与轨迹
交于
、
两点,且点
在线段
的上方,线段
的垂直平分线为
.
①求
的面积的最大值;
②轨迹
上是否存在除
、
外的两点
、
关于直线
对称,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将所有平面向量组成的集合记作
,
是从
到
的映射,记作
或
,其中
都是实数.定义映射
的模为:在
的条件下
的最大值记做
.若存在非零向量
,及实数
使得
,则称
为
的一个特征值.
(1)若
求
;
(2)如果
,计算
的特征值,并求相应的
;
(3)试找出一个映射
,满足以下两个条件:①有唯一特征值
,②
.(不需证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个函数
,如果对任意一个三角形,只要它的三边长
、
、
都在
的定义域内,就有
、
、
也是某个三角形的三边长,则称
为“双三角形函数”.
(1)判断
,
,
中,哪些是“双三角形函数”,哪些不是,并说明理由;
(2)若
是定义在
上周期函数,值域为
,求证:
不是“双三角形函数”;
(3)已知函数
,
,求证:函数
是“双三角形函数”.(可利用公式“
”)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com