精英家教网 > 高中数学 > 题目详情

已知函数g(x)=+1,h(x)=,x∈(-3,a],其中a为常数且a>0,令函数f(x)=g(x)·h(x).

(1)求函数f(x)的表达式,并求其定义域;

(2)当a=时,求函数f(x)的值域.

 

(1)x∈[0,a],(a>0)

(2)[]

【解析】【解析】
(1)f(x)=,x∈[0,a],(a>0).

(2)函数f(x)的定义域为[0,],

+1=t,则x=(t-1)2,t∈[1,],

f(x)=F(t)=

∵t=时,t=±2∉[1,],又t∈[1,]时,t+单调递减,F(t)单调递增,F(t)∈[].

即函数f(x)的值域为[].

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-7函数的图象(解析版) 题型:解答题

已知不等式x2-logax<0,当x∈(0,)时恒成立,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-4二次函数与幂函数(解析版) 题型:选择题

已知周期函数f(x)的定义域为R,周期为2,且当-1<x≤1时,f(x)=1-x2.若直线y=-x+a与曲线y=f(x)恰有2个交点,则实数a的所有可能取值构成的集合为(  )

A.{a|a=2k+或2k+,k∈Z}

B.{a|a=2k-或2k+,k∈Z}

C.{a|a=2k+1或2k+,k∈Z}

D.{a|a=2k+1,k∈Z}

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:解答题

已知函数f(x)的定义域为{x|x∈R,且x≠0},对定义域内的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0.

(1)求证:f(x)是偶函数;

(2)求证:f(x)在(0,+∞)上是增函数.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:选择题

设偶函数f(x)对任意x∈R都有f(x+3)=-,且当x∈[-3,-2]时,f(x)=4x,则f(107.5)=(  )

A.10 B. C.-10 D.-

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-2函数的单调性与最值(解析版) 题型:解答题

已知函数f(x)=x+ (x≠0,a∈R).

(1)当a=4时,证明:函数f(x)在区间[2,+∞)上单调递增;

(2)若函数f(x)在[2,+∞)上单调递增,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-2函数的单调性与最值(解析版) 题型:选择题

函数y=(x2-4x+3)的单调递增区间为(  )

A.(3,+∞) B.(-∞,1)

C.(-∞,1)∪(3,+∞) D.(0,+∞)

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-1函数的概念、定义域和值域(解析版) 题型:选择题

已知函数f(x)的定义域为[3,6],则函数y=的定义域为(  )

A.[,+∞) B.[,2)

C.(,+∞) D.[,2)

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-10导数的概念及运算(解析版) 题型:选择题

定义在R上的函数f(x)的导函数为f′(x),已知f(x+1)是偶函数,(x-1)f′(x)<0.若x1<x2,且x1+x2>2,则f(x1)与f(x2)的大小关系是(  )

A.f(x1)<f(x2) B.f(x1)=f(x2)

C.f(x1)>f(x2) D.不确定

 

查看答案和解析>>

同步练习册答案