已知函数g(x)=
+1,h(x)=
,x∈(-3,a],其中a为常数且a>0,令函数f(x)=g(x)·h(x).
(1)求函数f(x)的表达式,并求其定义域;
(2)当a=
时,求函数f(x)的值域.
科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-4二次函数与幂函数(解析版) 题型:选择题
已知周期函数f(x)的定义域为R,周期为2,且当-1<x≤1时,f(x)=1-x2.若直线y=-x+a与曲线y=f(x)恰有2个交点,则实数a的所有可能取值构成的集合为( )
A.{a|a=2k+
或2k+
,k∈Z}
B.{a|a=2k-
或2k+
,k∈Z}
C.{a|a=2k+1或2k+
,k∈Z}
D.{a|a=2k+1,k∈Z}
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:解答题
已知函数f(x)的定义域为{x|x∈R,且x≠0},对定义域内的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0.
(1)求证:f(x)是偶函数;
(2)求证:f(x)在(0,+∞)上是增函数.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:选择题
设偶函数f(x)对任意x∈R都有f(x+3)=-
,且当x∈[-3,-2]时,f(x)=4x,则f(107.5)=( )
A.10 B.
C.-10 D.-![]()
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-2函数的单调性与最值(解析版) 题型:解答题
已知函数f(x)=x+
(x≠0,a∈R).
(1)当a=4时,证明:函数f(x)在区间[2,+∞)上单调递增;
(2)若函数f(x)在[2,+∞)上单调递增,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-2函数的单调性与最值(解析版) 题型:选择题
函数y=
(x2-4x+3)的单调递增区间为( )
A.(3,+∞) B.(-∞,1)
C.(-∞,1)∪(3,+∞) D.(0,+∞)
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-1函数的概念、定义域和值域(解析版) 题型:选择题
已知函数f(x)的定义域为[3,6],则函数y=
的定义域为( )
A.[
,+∞) B.[
,2)
C.(
,+∞) D.[
,2)
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-10导数的概念及运算(解析版) 题型:选择题
定义在R上的函数f(x)的导函数为f′(x),已知f(x+1)是偶函数,(x-1)f′(x)<0.若x1<x2,且x1+x2>2,则f(x1)与f(x2)的大小关系是( )
A.f(x1)<f(x2) B.f(x1)=f(x2)
C.f(x1)>f(x2) D.不确定
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com