精英家教网 > 高中数学 > 题目详情

定义在R上的函数f(x)的导函数为f′(x),已知f(x+1)是偶函数,(x-1)f′(x)<0.若x1<x2,且x1+x2>2,则f(x1)与f(x2)的大小关系是(  )

A.f(x1)<f(x2) B.f(x1)=f(x2)

C.f(x1)>f(x2) D.不确定

 

C

【解析】由题可知函数y=f(x)的图象关于直线x=1对称,且在(1,+∞)上是减函数,由x1<x2且x1+x2>2,可知x2>1,x2>2-x1.若2-x1>1,则f(x2)<f(2-x1)=f(x1);若2-x1<1,即x1>1,此时x1<x2可得f(x1)>f(x2);若x1=1,根据函数性质,当x=1时函数取得最大值,也有f(x1)>f(x2).故选C.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-2函数的单调性与最值(解析版) 题型:解答题

已知函数g(x)=+1,h(x)=,x∈(-3,a],其中a为常数且a>0,令函数f(x)=g(x)·h(x).

(1)求函数f(x)的表达式,并求其定义域;

(2)当a=时,求函数f(x)的值域.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-12导数的应用二(解析版) 题型:选择题

函数f(x)=ex(sinx+cosx)在区间[0,]上的值域为(  )

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-11导数的应用一(解析版) 题型:选择题

若a>0,b>0,且函数f(x)=4x3-ax2-2bx-2在x=1处有极值,则ab的最大值为(  )

A.2 B.3 C.6 D.9

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-10导数的概念及运算(解析版) 题型:解答题

已知函数f(x)=x2-alnx(a∈R).

(1)若函数f(x)的图象在x=2处的切线方程为y=x+b,求a,b的值;

(2)若函数f(x)在(1,+∞)上为增函数,求a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-10导数的概念及运算(解析版) 题型:选择题

若曲线f(x)=,g(x)=xα在点P(1,1)处的切线分别为l1,l2,且l1⊥l2,则实数α的值为(  )

A.-2 B.2 C. D.-

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-8n次独立重复实验与二项分布(解析版) 题型:填空题

已知数列{an}是单调递增的等差数列,从a1,a2,a3,a4,a5,a6,a7中取走任意三项,则剩下四项依然构成单调递增的等差数列的概率是________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-7离散型随机变量及分布列(解析版) 题型:填空题

设随机变量的概率分布为

ε

0

1

2

P

1-

 

则ξ的数学期望的最小值是________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-4随机事件的概率(解析版) 题型:解答题

一盒中共装有除颜色外其余均相同的小球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1个球,求:

(1)取出1球是红球或黑球的概率;

(2)取出1球是红球或黑球或白球的概率.

 

查看答案和解析>>

同步练习册答案