精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x2-alnx(a∈R).

(1)若函数f(x)的图象在x=2处的切线方程为y=x+b,求a,b的值;

(2)若函数f(x)在(1,+∞)上为增函数,求a的取值范围.

 

(1)a=2,b=-2ln2

(2)(-∞,1]

【解析】【解析】
(1)因为f′(x)=x- (x>0),

又f(x)在x=2处的切线方程为y=x+b,斜率为1,

所以

解得a=2,b=-2ln2.

(2)若函数f(x)在(1,+∞)上为增函数,

则f′(x)=x-≥0在(1,+∞)上恒成立,

即a≤x2在(1,+∞)上恒成立.

所以a≤1.检验当a=1时满足题意.

故a的取值范围是(-∞,1].

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:选择题

设偶函数f(x)对任意x∈R都有f(x+3)=-,且当x∈[-3,-2]时,f(x)=4x,则f(107.5)=(  )

A.10 B. C.-10 D.-

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-12导数的应用二(解析版) 题型:填空题

设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-11导数的应用一(解析版) 题型:填空题

若函数f(x)=x3-3x+a有三个不同的零点,则实数a的取值范围是________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-10导数的概念及运算(解析版) 题型:解答题

已知函数f(x)=x3+x-16.

(1)求曲线y=f(x)在点(2,-6)处的切线的方程;

(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;

(3)如果曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-10导数的概念及运算(解析版) 题型:选择题

定义在R上的函数f(x)的导函数为f′(x),已知f(x+1)是偶函数,(x-1)f′(x)<0.若x1<x2,且x1+x2>2,则f(x1)与f(x2)的大小关系是(  )

A.f(x1)<f(x2) B.f(x1)=f(x2)

C.f(x1)>f(x2) D.不确定

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-8n次独立重复实验与二项分布(解析版) 题型:填空题

某篮球决赛在广东队与山东队之间进行,比赛采用7局4胜制,即若有一队先胜4场,则此队获胜,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为.据以往资料统计,第一场比赛组织者可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元,则组织者在此次决赛中要获得的门票收入不少于390万元的概率为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-7离散型随机变量及分布列(解析版) 题型:解答题

甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次性抽取3道题独立作答,然后由乙回答剩余3题,每人答对其中2题就停止答题,即闯关成功.已知在6道被选题中,甲能答对其中的4道题,乙答对每道题的概率都是.

(1)求甲、乙至少有一人闯关成功的概率;

(2)设甲答对题目的个数为ξ,求ξ的分布列.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-5古典概型(解析版) 题型:选择题

如图所示方格,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复.则填入A方格的数字大于B方格的数字的概率为(  )

A

 

 

B

 

A. B. C. D.

 

查看答案和解析>>

同步练习册答案