精英家教网 > 高中数学 > 题目详情
19.已知复数z1=2+6i,z2=-2i,若z1,z2在复平面内对应的点分别为A,B,线段AB的中点C对应的复数为z,则|z|=(  )
A.$\sqrt{5}$B.5C.2$\sqrt{5}$D.2$\sqrt{17}$

分析 复数z1=2+6i,z2=-2i,若z1,z2在复平面内对应的点分别为A(2,6),B(0,-2),利用中点坐标公式可得:线段AB的中点C(1,2).进而得出.

解答 解:复数z1=2+6i,z2=-2i,若z1,z2在复平面内对应的点分别为A(2,6),B(0,-2),
线段AB的中点C(1,2)对应的复数为z=1+2i,则|z|=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$.
故选:A.

点评 本题考查了复数的运算法则、几何意义、中点坐标公式、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.“x>0,y>0”是“$\frac{y}{x}+\frac{x}{y}≥2$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线$l:\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$为参数),曲线$C:\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}\right.(θ$为参数).
(1)使判断l与C的位置关系;
(2)若把曲线C1上个点的横坐标压缩为原来的$\frac{1}{2}$倍,纵坐标压缩为原来的$\frac{{\sqrt{3}}}{2}$倍,得到曲线C2,设点P是曲线C2上一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等轴双曲线C的一个焦点是F1(-6,0),点M是等轴双曲线的渐近线上的一个动点,点P是圆(x+6)2+y2=1上的任意一点,则|PM|的最小值是(  )
A.3$\sqrt{2}$-1B.2$\sqrt{3}$-1C.3$\sqrt{3}$+1D.2$\sqrt{3}$+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设等差数列{an}的前n项和为Sn,Sm-1=13,Sm=0,Sm+1=-15.其中m∈N*且m≥2,则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和的最大值为(  )
A.$\frac{24}{143}$B.$\frac{1}{143}$C.$\frac{24}{13}$D.$\frac{6}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数x,y满足$\left\{\begin{array}{l}{2x-y+6≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$,若目标函数z=-mx+y的最大值为-2m+10,最小值为-2m-2,则实数m的取值不可能是(  )
A.3B.2C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数g(x)=lnx-ax2+(2-a)x,a∈R.
(1)求g(x)的单调区间;
(2)若函数f(x)=g(x)+(a+1)x2-2x,x1,x2(x1<x2)是函数f(x)的两个零点,f′(x)是函数f(x)的导函数,证明:f′($\frac{{x}_{1}+{x}_{2}}{2}$)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A、B、C所对的边分别为a,b,c,满足(2a-c)cosB=bcosC.
(1)求B的大小;
(2)如图,AB=AC,在直线AC的右侧取点D,使得AD=2CD=4.当角D为何值时,四边形ABCD面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某程序框图如图所示,则该程序运行后输出的值是(  )
A.0B.-1C.-2D.-8

查看答案和解析>>

同步练习册答案