| A. | $\frac{2\sqrt{2}}{3}$ | B. | $\frac{\sqrt{7}}{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
分析 由于双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1( a>0,b>0)的渐近线与(x-2)2+y2=3相切,可得圆心(2,0)到渐近线的距离d=r,利用点到直线的距离公式即可得出.
解答 解:取双曲线的渐近线y=$\frac{b}{a}$x,即bx-ay=0.
∵双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1( a>0,b>0)的渐近线与(x-2)2+y2=1相切,
∴圆心(2,0)到渐近线的距离d=r,
∴$\frac{2b}{\sqrt{{a}^{2}+{b}^{2}}}$=$\sqrt{3}$,化为2b=$\sqrt{3}$c,
两边平方得3c2=4b2=4(c2-a2),化为c2=4a2.
∴e=$\frac{c}{a}$=2.
故选:C.
点评 本题考查了双曲线的渐近线及其离心率、点到直线的距离公式、直线与圆相切的性质扥个基础知识与基本技能方法,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 优秀 | 非优秀 | 总计 | |
| 男生 | 40 | 20 | 60 |
| 女生 | 20 | 30 | 50 |
| 总计 | 60 | 50 | 110 |
| P(K2≥k) | 0.500 | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 0.455 | 2.706 | 3.841 | 6.635 | 10.828 |
| A. | 90% | B. | 95% | C. | 99% | D. | 99.9% |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com