精英家教网 > 高中数学 > 题目详情
12.函数y=sinx-2x在R上的单调性是单调递减.

分析 求函数的导数,利用函数单调性和导数之间的关系进行判断即可.

解答 解:函数的导数y′=cosx-2,
∵-1≤cosx≤1,
∴y′=cosx-2<0,
即函数y=sinx-2x在R上的单调递减,
故答案为:单调递减

点评 本题主要考查函数单调性的判断,求函数的导数,利用导数法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设a>0,b>0,则“x>a且y>b”是“x+y>a+b,且xy>ab”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知△ABC的外接圆的圆心为O,半径为1,2$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{0}$,且|$\overrightarrow{OA}$|=|$\overrightarrow{AB}$|,则向量$\overrightarrow{AC}$在向量$\overrightarrow{BC}$方向上的投影为(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足$\overrightarrow{AP}$=λ$\overrightarrow{PB}$.
(Ⅰ)若λ=$\frac{1}{2}$,用向量$\overrightarrow{OA}$,$\overrightarrow{OB}$表示$\overrightarrow{OP}$;
(Ⅱ)若|$\overrightarrow{OA}$|=4,|$\overrightarrow{OB}$|=3,且∠AOB=60°,求$\overrightarrow{OP}$•$\overrightarrow{AB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知关于某设备的使用年限x(年)和所支出的费用y(万元),有如表所示的统计资料:
x23456
y2.23.8t6.57.0
根据上表提供的数据,求出了y关于x的线性回归方程为$\stackrel{∧}{y}$=1.23x+0.08,那么统计表中t的值为(  )
A.5.5B.5.0C.4.5D.4.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知全集U=R,集合$A=\{\;x|\;{(\frac{1}{2})^x}≤1\;\}$,B={x|x2-6x+8≤0},则图中阴影部分所表示的集合为(  )
A.{x|x≤0}B.{x|2≤x≤4}C.{x|0<x≤2或x≥4}D.{x|0≤x<2或x>4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,“∠A=30°”是“sinA=$\frac{1}{2}$”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若y=f(x2),则y′等于(  )
A.2xf′(x2B.2xf′(x)C.4x2f(x)D.f′(x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\frac{{e}^{x}}{x}$,若f′(x0)+f(x0)=0,则x0的值为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案