精英家教网 > 高中数学 > 题目详情
已知函数f(x)=9-x-2•(
1
3
x
(1)当x>0时,求f(x)的值域;
(2)求f(x)的单调减区间.
考点:指数型复合函数的性质及应用,复合函数的单调性
专题:计算题,函数的性质及应用
分析:化简f(x)=9-x-2•(
1
3
x=(3-x-1)2-1,
(1)由x>0可得0<3-x<1,从而确定f(x)的值域;
(2)由复合函数的单调性判断函数的单调性.
解答: 解:f(x)=9-x-2•(
1
3
x=(3-x-1)2-1,
(1)∵x>0,∴0<3-x<1;
∴-1<(3-x-1)2-1<0;
故f(x)的值域为(-1,0);
(2)由复合函数的单调性可知,
f(x)在(-∞,0)上是减函数,
故f(x)的单调减区间为(-∞,0).
点评:本题考查了函数的单调性及值域的求法,同时考查了复合函数的单调性的判断,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当实数a为何值时,使得复数z=(a-2)+(a+1)i
(1)是实数?
(2)是虚数?
(3)是纯虚数?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过点P(1,2)做直线与圆C:x2+y2=1相交于A、B两点,在线段AB上取点Q,满足|
AP
|•|
BQ
|=|
AQ
|•|
BP
|,证明:点Q总在某定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:方程
x2
3-t
+
y2
t+1
=1所表示的曲线为焦点在x轴上的椭圆,q:|t-a|<2(a∈N),若p是q的充分不必要条件,则a取值范围为(  )
A、(-∞,1]
B、[-1,1]
C、[0,+∞)
D、(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=2sin(2x-
π
3
),x∈[0,
π
6
],求最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系xoy中,动抛物线c:y=2(x-
3
-3cosθ)2+1+3sinθ(θ任意实数),以Ox轴为极轴建立极坐标系,直线l的极坐标方程是ρcos(θ+
π
6
)=0.
(1)写出直线l的直角坐标方程和动抛物线c的顶点的轨迹E的参数方程;
(2)求直线l被曲线E截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ≤π)的图象如图所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设△ABC的内角A,B,C,所对的边分别为a,b,c,若a≥b=
3
,f(
B
2
)=
6
+
2
2
,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线的顶点在原点,焦点在x轴上,准线l与x轴相交于点A(-1,0),过点A的直线与抛物线相交于P、Q两点. 
(1)求抛物线的方程;
(2)若
FP
FQ
=0,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为等比数列{an}的前n项和,且a1+a4=-
7
16
,且对于任意的n∈N*,有Sn、Sn+2、Sn+1成等差数列,{bn}的前n项和Tn=
1
2
n2+
k
2
n(n∈N*,k>0),且Tn的最小值为1.
(1)求数列{an}和{bn}的通项公式;
(2)对任意m∈N*,将数列{bn}中落入区间(2m+
9
2
,4m+
9
2
)内的个数记为cm,求数列{cm}的前m项和;
(3)记Pn=|
b1
a1
|+|
b2
a2
|+|
b3
a3
|+…+|
bn
an
|,若(n-1)2≤m(Pn-n-1)对于n≥2恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案