精英家教网 > 高中数学 > 题目详情
16.设双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦点为F(-c,0)(c>0),P为双曲线C右支上的一点,线段PF与圆x2+y2+$\frac{2c}{3}$x+$\frac{a^2}{9}$=0相切于点Q,且$\overrightarrow{PF}$+3$\overrightarrow{FQ}$=$\overrightarrow 0$,则双曲线C的离心率为$\sqrt{5}$.

分析 运用对应边成比例,可得QC∥PE,再由双曲线的定义,以及直线和圆相切的性质,运用勾股定理和离心率公式,建立方程关系即可得到结论.

解答 解:圆的标准方程为(x+$\frac{c}{3}$)2+y2=$\frac{{c}^{2}}{9}$-$\frac{a^2}{9}$=$\frac{{b}^{2}}{9}$,
则圆心坐标D(-$\frac{c}{3}$,0),半径R=$\frac{b}{3}$,
则$\frac{FD}{FE}$=$\frac{c-\frac{c}{3}}{2c}=\frac{\frac{2}{3}}{2}$=$\frac{1}{3}$,
∵$\overrightarrow{PF}$+3$\overrightarrow{FQ}$=$\overrightarrow 0$,
∴$\overrightarrow{PF}$=3$\overrightarrow{QF}$,
∴|$\overrightarrow{PF}$|=3|$\overrightarrow{QF}$|,
∴$\frac{QF}{PF}$=$\frac{1}{3}$
即$\frac{FD}{FE}$=$\frac{QF}{PF}$=$\frac{1}{3}$,
则QD∥PE,
则PF=3QD=3×$\frac{b}{3}$=b,
∵直线PF与圆(x+$\frac{c}{3}$)2+y2=$\frac{{b}^{2}}{9}$,相切于点Q,
∴QC⊥PF,
则PE⊥PF,
则PF=$\sqrt{F{E}^{2}-P{E}^{2}}$=$\sqrt{4{c}^{2}-{b}^{2}}$,
由双曲线的定义可得,|PF|-|PE|=2a,
即$\sqrt{4{c}^{2}-{b}^{2}}$-b=2a,
即$\sqrt{4{c}^{2}-{b}^{2}}$=2a+b,
平方得4c2-b2=4a2+4ab+b2
即4c2-4a2-2b2=4ab,
即4b2-2b2=4ab,
即2b2=4ab,
则b=2a,c2=5a2
∴e=$\frac{c}{a}$=$\sqrt{5}$.
故答案为:$\sqrt{5}$

点评 本题考查双曲线的定义和性质,考查离心率的求法,考查直线和圆相切的条件,以及中位线定理和勾股定理的运用,考查运算能力,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设f(x)=$\left\{\begin{array}{l}{log_2}x+1,(x>0)\\{2^x},(x≤0)\end{array}$,若f(a)=3,则a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=2cos(ωx+φ)(ω>0,-π<φ<0)的部分图象如图所示,则f(0)的值(  )
A.$-\frac{3}{2}$B.-1C.$-\sqrt{2}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线y2=2px的焦点F(1,0),过F作直线l交抛物线于A(x1,y1),B(x2,y2)两点,如图所示,A在x轴上方.
(1)若|AB|=8时,求直线l的倾斜角;
(2)设P(-1,0),求证:∠APQ=∠CPQ;
(3)设Q(2,0),AQ的延长线交抛物线于C,设BC的中点为D,当直线DF在y轴上的截距为m,且m∈(0,+∞),求y1取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a$,$\overrightarrow b$满足$|{\overrightarrow a}|$=2,$\overrightarrow a$•$({\overrightarrow b-\overrightarrow a})$=-3,则$\overrightarrow b$在$\overrightarrow a$方向上的投影为(  )
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若三棱柱ABC-A1B1C1的体积为V,P为CC1上的一点,${V}_{P-AB{B}_{1}{A}_{1}}$=$\frac{2V}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在空间直角坐标系中,已知A(3,0,a),B(0,3,-2),C(1,1,-1),若平面ABC过坐标原点,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过圆(x-1)2+(y+2)2=16上一点(1,2)的圆的切线方程是y=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线l:y=kx与曲线C:y=x3-4x2+3x顺次相交于A,B,C三点,若|AB|=|BC|,则k=(  )
A.-5B.-$\frac{5}{9}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案