精英家教网 > 高中数学 > 题目详情
14.设实数a,b,c满足a2+b2≤c≤1,则a+$\sqrt{3}$b+$\frac{1}{2}$c的最小值是-$\frac{3}{2}$.

分析 由已知式子和配方法及不等式可得a+$\sqrt{3}$b+$\frac{1}{2}$c≥$\frac{1}{2}$[(a+1)2+(b+$\sqrt{3}$)2]-2,由式子的几何意义可得.

解答 解:∵实数a,b,c满足a2+b2≤c≤1,
∴a+$\sqrt{3}$b+$\frac{1}{2}$c≥a+$\sqrt{3}$b+$\frac{1}{2}$a2+$\frac{1}{2}$b2
=$\frac{1}{2}$[(a+1)2+(b+$\sqrt{3}$)2]-2,
而(a+1)2+(b+$\sqrt{3}$)2表示点(a,b)到点(-1,-$\sqrt{3}$)的距离平方,
又点(a,b)在单位圆a2+b2=1即内部,故最小距离为$\sqrt{(-1)^{2}+(-\sqrt{3})^{2}}$-1=1,
故(a+1)2+(b+$\sqrt{3}$)2的最小值为1,原式的最小值为-$\frac{3}{2}$,
故答案为:-$\frac{3}{2}$.

点评 本题考查式子的最值,由不等式和配方法转化为数形结合是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|3≤x<7},B={2<x<10},C={x|5-a<x<a}.
(1)求A∪B,(∁RA)∩B;
(2)若C⊆(A∪B),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.根据某样本数据得到回归直线方程为y=1.5x+45,x∈{1,7,10,13,19},则$\overline{y}$=60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若sinαcos(α-β)-cosαsin(α-β)=$\frac{4}{5}$,则sinβ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知α∈(0,$\frac{π}{2}$),且sin($α-\frac{π}{3}$)=$\frac{5}{13}$
(1)求cosα的值;
(2)求sin(2α-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x,y∈R+,设T=$\frac{x+y}{{x}^{2}+{y}^{2}+4}$,则T的最大值为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.△ABC的三内角A,B,C所对边分别为a,b,c,若a2+b2-c2=ab,则角C的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的首项为a1=$\frac{1}{2}$,且$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{1}{2}$(n∈N*).
(1)求{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{1}{{a}_{n}}$,求数列{bn}的前5项和S5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知x∈(0,$\frac{π}{2}$),求函数f(x)=$\frac{1+cos2x+8si{n}^{2}x}{sin2x}$的最小值.

查看答案和解析>>

同步练习册答案