精英家教网 > 高中数学 > 题目详情
14.求椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的顶点坐标、焦点坐标、长轴长、短轴长、焦距和离心率.

分析 利用椭圆的简单性质求解.

解答 解:∵椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$中,a=5,b=3,c=4,
∴顶点坐标(±5,0),(0,±3)、焦点坐标(±4,0)、
长轴长10、短轴长6、焦距8、离心率$e=\frac{4}{5}$.

点评 本题考查椭圆的顶点坐标、焦点坐标、长轴长、短轴长、焦距和离心率的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在△ABC中,下列各表达式为常数的是(  )
A.sin(A+B)+sinCB.cos(A+B)-cosAC.sin2$\frac{A+B}{2}$+sin2$\frac{C}{2}$D.sin$\frac{A+B}{2}$sin$\frac{C}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆M的对称轴为坐标轴,抛物线y2=4x的焦点F是椭圆M的一个焦点,且椭圆M的离心率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆M的方程;
(2)已知直线y=x+m与椭圆M交于A,B两点,且椭圆M上存在点P,满足$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,底面ABCD是菱形.过AB的平面与侧棱CC1,DD1分别交于点E,F.
(Ⅰ)求证:EF∥AB;
(Ⅱ)求证:A1C1⊥平面DBB1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$离心率为$\frac{{\sqrt{2}}}{2}$,点P(0,1)在短轴CD上,且$\overrightarrow{PC}•\overrightarrow{PD}=-1$.
(I)求椭圆E的方程;
(Ⅱ)过点P的直线l与椭圆E交于A,B两点.
(i)若$\overrightarrow{PB}=\frac{1}{2}\overrightarrow{AP}$,求直线l的方程;
(ii)在y轴上是否存在与点P不同的定点Q,使得$\frac{{\left|{QA}\right|}}{{\left|{QB}\right|}}=\frac{{\left|{PA}\right|}}{{\left|{PB}\right|}}$恒成立,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=sinx+$\sqrt{3}$cosx,则f(x)的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{10})^{x},x≤10}\\{-lg(x+2),x>10}\end{array}\right.$,若f(8-m2)<f(2m),则实数m的取值范围是(-4,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列正确的是(  )
A.如果两个复数的积是实数,那么这两个复数互为共轭复数
B.用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是:方程x2+ax+b=0至多有一个实根
C.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…则可得到a10+b10=122
D.在复平面中复数z满足|z|=2的点的轨迹是以原点为圆心,以2为半径的圆

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题p:?x∈R,x2-x-2≥0,那么命题?p为(  )
A.?x∈R,x2-x-2≤0B.?x∈R,x2-x-2<0C.?x∈R,x2-x-2≤0D.?x∈R,x2-x-2<0

查看答案和解析>>

同步练习册答案