| A. | 如果两个复数的积是实数,那么这两个复数互为共轭复数 | |
| B. | 用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是:方程x2+ax+b=0至多有一个实根 | |
| C. | 观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…则可得到a10+b10=122 | |
| D. | 在复平面中复数z满足|z|=2的点的轨迹是以原点为圆心,以2为半径的圆 |
分析 A根据共轭复数的定义进行判断即可;
B反证法要假设结论的反面成立;
C根据条件可得1+3=4,3+4=7,4+7=11,7+11=18,…可得a10+b10=123.
D显然成立.
解答 解:A如果两个复数的积是实数,那么这两个复数不一定互为共轭复数,比如2×3,故错误;
B用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是:方程x2+ax+b=0没有实根,故错误;
C观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…则可得到a10+b10=123,故错误;
D根据复平面的定义,显然正确.
故选:D.
点评 考查了共轭复数,反证法,复平面的定义,属于基础题型.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{11}{4}$ | B. | 1 | C. | $\frac{19}{4}$ | D. | $\frac{21}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,都有x2<1 | B. | ?x∈R,使得x2≥1 | C. | ?x∈R,都有x2≥1 | D. | ?x∈R,使得x2>1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,x2-5x+1≤0 | B. | ?x∈R,x2-5x+1≤0 | C. | ?x∈R,x2-5x+1<0 | D. | ?x∈R,x2-5x+1>0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com