精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=sinx+$\sqrt{3}$cosx,则f(x)的最大值为2.

分析 由条件利用两角和的正弦公式,正弦函数的值域,求得函数的最大值.

解答 解:∵函数$f(x)=sinx+\sqrt{3}cosx$=2sin(x+$\frac{π}{3}$),
∴f(x)的最大值为2,
故答案为:2.

点评 本题主要考查两角和的正弦公式,正弦函数的值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知角α的终边经过点P(x,-$\sqrt{2}$)(x≠0),且cosα=$\frac{\sqrt{3}}{6}$x,求sinα+$\frac{cosα}{sinα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.袋中有大小相同4个小球,编号分别为1,2,3,4,从袋中任取两个球(不放回),则这两个球编号正好相差1的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$sinα=\frac{2}{3},cosβ=-\frac{3}{5}$,α,β都是第二象限角,则cos(α+β)=$\frac{{3\sqrt{5}-8}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的顶点坐标、焦点坐标、长轴长、短轴长、焦距和离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若复数z满足z(1+i)=3+i,其中i为虚数单位,则复数z的共轭复数为(  )
A.2+iB.2-iC.-2+iD.-2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆$\frac{x^2}{k+6}$+$\frac{y^2}{k}$=1的上顶点为A、右顶点为B,直线x-2y=0过线段AB的中点,则实数k等于(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题“?x∈R,使得x2<1”的否定是(  )
A.?x∈R,都有x2<1B.?x∈R,使得x2≥1C.?x∈R,都有x2≥1D.?x∈R,使得x2>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.北京高中会考考试科目原始得分采用百分制,公布成绩使用A、B、C、D等级制.A、B、C三级为合格等级,D为不合格等级.各等级分数划分标准:85分及以上为A,84-70分为B,69-60分为C,60分以下为D.如图的茎叶图(十位为茎,个位为叶)记录了某校高三年级6名学生的数学会考成绩.  
(Ⅰ)求出茎叶图中这6个数据的中位数和平均数;
(Ⅱ)若从这6名学生中随机抽出2名,记事件X:“恰有一名学生的成绩达到A等”,事件Y:“至多有一名学生的成绩达到A等”,分别求事件X、事件Y的概率.

查看答案和解析>>

同步练习册答案