精英家教网 > 高中数学 > 题目详情
9.函数f(x)是奇函数,且当x<0时,$f(x)={(\frac{1}{2})^x}$,则f(1)=-2.

分析 由奇函数的性质:f(-x)=-f(x),代入解析式求出f(1)的值即可.

解答 解:因为函数f(x)是奇函数,且当x<0时,$f(x)={(\frac{1}{2})^x}$,
所以f(1)=-f(-1)=-${(\frac{1}{2})}^{-1}$=-2,
故答案为:-2.

点评 本题考查了奇函数性质的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届河南商丘第一高级中学年高三上理开学摸底数学试卷(解析版) 题型:解答题

如图,在四棱锥中,底面,底面是直角梯形,

(1)在上确定一点,使得平面,并求的值;

(2)在(1)条件下,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北邢台市高一上学期月考一数学试卷(解析版) 题型:选择题

若集合,则元素的个数为( )

A.2 B.4

C.5 D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,下顶点和上顶点分别为B1,B2,以B1为圆心,B1B2为半径的圆恰好经过点F且与直线3x-4y+6=0相切,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{|x+1|,x≤0}\\{|lo{g}_{2}x|,x>0}\end{array}\right.$,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4
则x31x+x2)+$\frac{1}{{{x}_{3}}^{2}{x}_{4}}$的取值范围是(-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱柱ABC-A1B1C1中,B1B=B1A=BA=BC=2,∠B1BC=90°,D为AC的中点,AB⊥B1D.
(Ⅰ)求证:平面ABC⊥平面ABB1A1
(Ⅱ)求B到平面AB1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知直线l1:12x-5y+15=0和l2:x=-2,点P为抛物线y2=8x上的动点,则点P到直线l1和直线l2的距离之和的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x,y满足$\left\{\begin{array}{l}x-y≥0\\ x+y≤4\\ y≥1\end{array}$,且z=$\frac{1}{2}$x+y的最大值是M,最小值是m,若 Ma+mb=3(a,b均为正实数),则$\frac{2}{a}$+$\frac{1}{b}$的最小值为(  )
A.4B.$\frac{9}{2}$C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一个交点与抛物线y2=8x的焦点重合,且双曲线的离心率等于$\sqrt{2}$,则该双曲线的方程为(  )
A.x2-y2=4B.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{4}$=1D.x2-y2=2

查看答案和解析>>

同步练习册答案