精英家教网 > 高中数学 > 题目详情
在数列{an}中,Sn是它的前n项和,且Sn=n2+n,在数列{bn}中,b1=1,b2=3,且bn+2=4bn+1-4bn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设cn=bn+1-2bn,求证:数列{cn}为等比数列;
(Ⅲ)在(Ⅱ)的条件下,求数列{an•cn}的前n项和Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由an=
S1,n=1
Sn-Sn-1,n≥2
,能求出数列{an}的通项公式.
(Ⅱ)
cn+1
cn
=
bn+2-2bn+1
bn+1-2bn
=
2bn+1-4bn
bn+1-2bn
=2,由此能证明数列{cn}为等比数列.
(Ⅲ)cn=1×2n-1=2n-1,ancn=2n×2n-1=n×2n,由此利用错位相减法能求出数列{an•cn}的前n项和.
解答: (Ⅰ)解:当≥2时,an=Sn-Sn-1=(n2+n)-[(n-1)2+(n-1)]=2n,…(2分)
当n=1时,a1=2×1=2,
又a1=S1=1+1=2,…(3分)
∴an=2n.…(4分)
(Ⅱ)证明:
cn+1
cn
=
bn+2-2bn+1
bn+1-2bn

=
4bn+1-4bn-2bn+1
bn+1-2bn

=
2bn+1-4bn
bn+1-2bn
=2,
c1=b2-2b1=3-2=1,
∴数列{cn}为以1为首项,2为公比的等比数列.…(8分)
(Ⅲ)由(Ⅱ)得cn=1×2n-1=2n-1,…(9分)
∴ancn=2n×2n-1=n×2n,…(10分)
Tn=1×2+2×22+3×23+…+n×2n,①
2Tn=1×22+2×23+3×24+…+n×2n-1,②
①-②得:
-Tn=2+22+23+…+2n-n•2n+1
=
2(1-2n)
1-2
-n•2n+1

=-2-(n-1)•2n+1
Tn=(n-1)•2n+1+2.…(12分)
点评:本题考查数列的通项公式的求法,考查等比数列的证明,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2sin
π
12
cos
π
12
的值是(  )
A、
1
8
B、
1
4
C、
1
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线方程为x2=4y,过点M(0,2)作直线与抛物线交于两点A(x1,y1),B(x2,y2),过A,B分别作抛物线的切线,两切线的交点为P.
(Ⅰ)求x1x2的值;
(Ⅱ)求点P的纵坐标;
(Ⅲ)求△PAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
b
x
+c(a>0)的图象在点(1,f(1))处的切线方程为y=x-1.
(1)用a表示出b,c;
(2)证明:当a≥
1
2
时,f(x)≥1nx在[1,+∞)上恒成立;
(3)证明:1+
1
2
+
1
3
+…+
1
n
>1n(n+1)+
n
2(n+1)
.(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c为三角形的三边,且a+b+c=3,求证:
1
a+b-c
+
1
b+c-a
+
1
c+a-b
≥3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=2,an+1=2an
(1)求数列{an}的通项公式及前n项和Sn
(2)若bn=anlog2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,f(x1)),B(x2,f(x2))是函数f(x)=
1
2
+log2
x
1-x
的图象上的任意两点.
(1)当x1+x2=1时,求f(x1)+f(x2)的值;
(2)设Sn=f(
1
n+1
)+f(
2
n+1
)+…+f(
n-1
n+1
)+f(
n
n+1
),其中n∈N*,求Sn
(3)对于(2)中Sn,已知an=(
1
Sn+1
2,其中n∈N*,设Tn为数列{an}的前n项的和,求证:
4
9
≤Tn
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2-3x+2<0的解集为A={x|1<x<b}
(1)求a,b的值;
(2)求函数f(x)=(2a+b)x-
9
(a-b)x
在区间[3,5]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
a
x
.(a∈R)
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)若a=-
2
,求函数f(x)在[1,e]上的最小值.

查看答案和解析>>

同步练习册答案