精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
7
x+2
-1
的定义域为集合A,函数g(x)=lg(-x2-mx+2m2)的定义域为集合B,
(1)当m=1时,求A∩(∁RB);
(2)若A∩B={x|-2<x<3},求实数m的值.
考点:交、并、补集的混合运算,函数的定义域及其求法
专题:集合
分析:(1)m=1时,A={x|-2<x≤5},B={x|-2<x<1},由此能求出A∩(∁RB).
(2)由A={x|-2<x≤5},B={x|-x2-mx+2m2>0}={x|(x-m)(x+2m)<0},A∩B={x|-2<x<3},能求出m=3.
解答: 解:(1)m=1时,A={x|
7
x+2
-1≥0
}={x|-2<x≤5},
B={x|-x2-x+2>0}={x|-2<x<1}
∴A∩(∁RB)={x|-2<x≤5}∩{x|x≤-2或x≥1}={x|1≤x≤5}.
(2)∵A={x|
7
x+2
-1≥0
}={x|-2<x≤5},
B={x|-x2-mx+2m2>0}={x|(x-m)(x+2m)<0},
A∩B={x|-2<x<3},
∴m=3.
点评:本题考查集合的交、并、补集的混合运算,考查实数值的求法,解题时要注意不等式题的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在三棱拄ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BC=1,CC1=2,AB=
2
,∠BCC1=
π
3

(1)求证:C1B⊥平面ABC;
(2)当E为CC1的中点时,求二面角A-EB1-A1的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=ax+1与双曲线3x2-y2=1交于A、B点.
(1)求a的取值范围;
(2)若以AB为直径的圆过坐标原点,求实数a的值;
(3)是否存在这样的实数a,使A、B两点关于直线y=
1
2
x对称?若存在,请求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(1-2x)100=a0+a1x+a2x2+…+a100x100,求:
(1)a1+a2+…+a100
(2)a0+a2+a4+…+a100
(3)a1+a3+a5+…+a99
(4)|a0|+|a1|+…+|a100|

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中.
(1)求证:平面A1BD∥平面CD1B1
(2)求异面直线A1D与D1C所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有4个同学去看电影,他们坐在了同一排,且一排有6个座位.问:
(1)所有可能的坐法有多少种?
(2)此4人中甲,乙两人相邻的坐法有多少种?
(3)所有空位不相邻的坐法有多少种?(结果均用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为正方形,PA⊥AD,面PAD⊥面ABCD,PA=AD=2,E,F,G分别是线段PA,PD,CD的中点,
(1)求证:PB∥面EFG;
(2)求异面直线EG与BD所成角的余弦;
(3)线段CD上是否存在点Q,使A到平面EFQ的距离为0.8?若存在,求出CQ长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列程序运行后,a,b,c的值各等于什么?
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“对于任意x∈[0,1],x2-a≥0”,命题q:“存在x∈R,x2+2ax+2-a=0”,若命题“p∧q”是真命题,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案