精英家教网 > 高中数学 > 题目详情
已知A,B,C是△ABC的三个内角,且满足(sinA-sinB)(sinA+sinB)=sinC(
2
sinA-sinC)
(Ⅰ)求角B;
(Ⅱ)若sinA=
3
5
,求cosC的值.
考点:正弦定理,余弦定理
专题:解三角形
分析:(Ⅰ)△ABC中,化简已知条件再由正弦定理可得a2+c2-b2=
2
ac,求得cosB=
a2+c2-b2
2ac
 的值,从而求得B的值.
(Ⅱ)根据B=
π
4
sinA=
3
5
2
2
,可得A<B,cosA=
4
5
,再根据cosC=cos(
4
-A),利用两角差的余弦公式花间求得结果.
解答: 解:(Ⅰ)△ABC中,由已知条件可得 sin2A-sin2B=
2
sinAsinC-sin2C,
再由正弦定理可得 a2+c2-b2=
2
ac,
∴cosB=
a2+c2-b2
2ac
=
2
2

∴B=
π
4

(Ⅱ)∵B=
π
4
sinA=
3
5
2
2

∴A<B,cosA=
4
5

∴cosC=cos(
4
-A)=cos
4
cosA+sin
4
sinA=-
2
10
点评:本题主要考查正弦定理、余弦定理、两角差的余弦公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从8名男同学,2名女同学中选3名同学开会,至少有1名女同学的选法有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|log2(x+1)|,-1<x<0
-x2+4x,x≥0
,且关于x的方程f(x)-m=0,(m∈R)恰有三个互不相同的实数根x1,x2,x3,则x1x2x3的取值范围是(  )
A、(-4,0)
B、(-
15
4
,0)
C、[-
15
4
,0)
D、[-4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解学生的体能情况,抽取了一个学校的部分学生进行一分钟跳绳次数测试,将所得数据整理成统计图如图,已知图中从左到右各个小组的高度之比分别为1:3:4:2,最左边一组的频数为5,请根据以上信息和图形解决以下问题:
(1)参加这次测试的学生共有多少人?
(2)求第四小组的频率;
(3)若次数在75次以上(含75次)为达标,那么,学生的达标率是多少?
(4)在这次测试中,学生跳绳次数的中位数落在那个小组内?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设无穷数列{an}的首项a1=1,前n项和为Sn(n∈N*),且点(Sn-1,Sn)(n∈N*,n≥2)在直线(2t+3)x-3ty+3t=0上(t为与n无关的正实数).
(1)求证:数列{an}(n∈N*)为等比数列;
(2)记数列{an}的公比为f(t),数列{bn}满足b1=1,bn=f(
1
bn-1
)(n∈N*,n≥2),
设cn=b2n-1b2n-b2nb2n+1,求数列{cn}的前n项和Tn
(3)(理)若(1)中无穷等比数列{an}(n∈N*)的各项和存在,记S(t)=a1+a2+…+an+…,求函数S(t)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设不等式组
x>0
y>0
y≤-nx+3n
所表示的平面区域为Dn,记Dn内的整点个数为an(n∈N*)(整点即横坐标和纵坐标均为整数的点).
(1)求证:数列{an}的通项公式是an=3n(n∈N*).
(2)记数列{an}的前n项和为Sn,且Tn=
Sn
3•2n-1
.若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f1(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的一段图象过点(0,1),如图所示.
(Ⅰ)求函数f1(x)的解析式;
(Ⅱ)将函数y=f1(x)的图象按向量
a
=(
π
4
,0)
平移,得到函数y=f2(x),求y=f1(x)+f2(x)的最大值,并求此时自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x+2cos(
π
2
-x)+a-2

(1)当a=1时,求函数f(x)在[-
π
6
6
]
上的值域;
(2)当a为何值时,方程f(x)=0在[0,2π)上有两个解.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科学生做)若函数f(x)对任意x1,x2∈D,都有|f(x1)-f(x2)|≤|x1-x2|成立,则称f(x)为D上的“收缩”函数
(1)判断函数f(x)=
1
4
x2+
1
2
x
在[-1,1]上是否是“收缩”函数,并说明理由;
(2)函数f(x)=
k
x+2
(k∈R)

    (i)讨论函数f(x)=
k
x+2
(k∈R)
在x∈[-1,+∞)的单调性,并用定义证明;
   (ii)是否存在k∈R,使得f(x)=
k
x+2
在[-1,+∞)上为“收缩”函数,若存在,求k的范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案