精英家教网 > 高中数学 > 题目详情
20.如图,在正方体ABCD-A1B1C1D1中,异面直线A1D与D1C所成的角为(  )
A.30°B.45°C.60°D.90°

分析 连结CB1,ABCD-A1B1C1D1是正方体,A1D∥B1C,异面直线A1D与D1C所成的角为∠B1CD1(或补角),连结B1D1,可得△B1D1C是等边三角形,可得∠B1CD1的大小.

解答 解:连结CB1,ABCD-A1B1C1D1是正方体,
∴A1D∥B1C,
∴异面直线A1D与D1C所成的角为∠B1CD1(或补角),
连结B1D1
可知B1D1=D1C=B1C,(三条边是平面的对角线)
∴△B1D1C是等边三角形,
∴∠B1CD1=60°,即异面直线A1D与D1C所成的角为60°.
故选:C.

点评 本题考查两条异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图是一个几何体的三视图,则这个几何体的体积为(  )
A.1B.$\frac{4}{3}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得的数字分别为x,y,则$\frac{x}{y}$为整数的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=-x3+12x+m.
(1)若x∈R,求函数f(x)的极大值与极小值之差;
(2)若函数y=f(x)有三个零点,求m的取值范围;
(3)当x∈[-1,3]时,f(x)的最小值为-2,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某校从参加高三年级学业水平考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为150分),其样本频率分布表如下(部分数据丢失):
分组频数频率
[30,50)20.04
[50,70)30.06
[70,90)14P1
[90,110)150.30
[110,130)xP2
[130,150)40.08
合计501
(Ⅰ)分别求出上表中的x;P1和P2的大小
(Ⅱ)估计成绩在120分以上学生的比例;
(Ⅲ)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩[130,150)中选两位同学,共同帮助[30,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为135分,求甲、乙两同学恰好被安排在同一小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四个说法:
①“x>2”是“$\frac{1}{x}<\frac{1}{2}$”的充分不必要条件;
②命题“设a,b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题;
③命题p:存在x0∈R,使得x02+x0+1<0,则¬p:任意x∈R都有x2+x+1≥0
④一个命题的否命题为真,则它的逆命题一定为真
其中正确的是(  )
A.①④B.②④C.①③④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.从集合{1,2,3,5,11}中有放回地任取2次元素分别作为直线Ax+By=0中的A、B,则该直线恰好为坐标系角平分线的概率是(  )
A.$\frac{1}{25}$B.$\frac{1}{5}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以x表示
附:方差S2=$\frac{1}{n}$[(x1-x)2+(x2-x)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$为x1,x2,…,xn的平均数
(1)如果x=8,求乙组同学植树棵数的平均数和方差;
(2)如果x=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.有5条长度分别为1,3,5,6,7的线段,从中任意取出3条,则所取3条线段可以构成三角形的概率为0.4.

查看答案和解析>>

同步练习册答案