精英家教网 > 高中数学 > 题目详情
已知点(1,
1
3
)是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=
Sn
+
Sn-1
(n≥2)
(Ⅰ)求数列{an}和{bn}的通项公式
(Ⅱ)求数列{
1
bnbn+1
}前n项和为Tn
考点:数列的求和
专题:综合题,等差数列与等比数列
分析:(Ⅰ)依题意,可求得a=
1
3
,继而可求得a1=
1
3
-c,a2=-
2
9
,a3=-
2
27
,利用数列{an}为等比数列,可求得c=1,从而可求得数列{an}的通项公式;利用Sn-Sn-1=(
Sn
+
Sn-1
)(
Sn
-
Sn-1
)=
Sn
+
Sn-1
(n≥2),可求得
Sn
-
Sn-1
=1,从而可求得Sn=n2;当n≥2,bn=Sn-Sn-1=n2-(n-1)2=2n-1,n=1时也适合,从而可得
{bn}的通项公式;
(Ⅱ)利用裂项法知,
1
bnbn+1
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
),于是可求得数列{
1
bnbn+1
}前n项和为Tn
解答: 解:(Ⅰ)∵f(1)=
1
3
,故a=
1
3

∴f(x)=(
1
3
)
x

∵a1=f(1)-c=
1
3
-c,a2=[f(2)-c]-[f(1)-c]=-
2
9
,a3=[f(3)-c]-[f(2)-c]=-
2
27

又数列{an}为等比数列,a1=
a22
a3
=
4
81
-
2
27
=-
2
3
=
1
3
-c,
∴c=1,又公比q=
a2
a1
=
1
3

∴an=-
2
3
(
1
3
)
n-1
=-2(
1
3
)
n
,n∈N*
∵Sn-Sn-1=(
Sn
+
Sn-1
)(
Sn
-
Sn-1
)=
Sn
+
Sn-1
(n≥2),
又bn>0,
Sn
>0,
Sn
-
Sn-1
=1;
∴数列{
Sn
}构成一个首相为1公差为1的等差数列,
Sn
=1+(n-1)×1=n,于是Sn=n2
当n≥2,bn=Sn-Sn-1=n2-(n-1)2=2n-1;
∴bn=2n-1,n∈N*
(Ⅱ)∵
1
bnbn+1
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
),
∴Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1

=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
7
)+(
1
7
-
1
9
)+…+(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1

=
n
2n+1
点评:本题考查数列的求和,着重考查等差关系与等比关系的确定及其通项公式的应用,考查错位相减法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线x-y+3=0的倾斜角是(  )
A、
π
6
B、
6
C、
π
4
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

咖啡馆配制两种饮料,甲种饮料每杯分别用奶粉、咖啡、糖9g、4g、3g;乙种饮料每杯分别用奶粉、咖啡、糖4g、5g、10g,已知每天使用原料限额为奶粉3600g,咖啡2000g,糖3000g,如果甲种饮料每杯能获利0.7元,乙种饮料每杯能获利1.2元,每天在原料使用的限额内,饮料能全部售完,问咖啡馆每天怎样安排配制饮料获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

某商品在近30天内每件的销售价格P(元)和时间t(天)的函数关系为:P=
t+20  (0<t<25)
-t+100  (25≤t≤30)
(t∈N*),设商品的日销售量Q(件)与时间t(天)的函数关系为Q=40-t(0<t≤30,t∈N*),则第
 
天,这种商品的日销售金额最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,O为线段A0A2013外一点,若A0,A1,A2,A3,…,A2013中任意相邻两点的距离相等,
OA0
=
a
OA2013
=
b
,用
a
b
表示
OA0
+
OA1
+
OA2
+…+
OA2013
结果为(  )
A、1006(
a
+
b
B、1007(
a
+
b
C、2012(
a
+
b
D、2014(
a
+
b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x0是函数f(x)=(
1
2
x-
x
的一个零点,若x1∈(0,x0),x2∈(x0,+∞),则(  )
A、f(x1)<0,f(x2)<0
B、f(x1)>0,f(x2)<0
C、f(x1)<0,f(x2)>0
D、f(x1)>0,f(x2)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

正四面体棱长为a,求其内切球与外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,三棱台ABC-A′B′C′中,AB:A′B′=1:2,则三棱锥C-A′B′C′,B-A′B′C,A′-ABC的体积之比为(  )
A、1:1:1
B、2:1:1
C、4:2:1
D、4:4:1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:x2+y2-2x+2y=0与直线L:y+2=k(x-2),则C与L的公共点(  )
A、有2个B、最多1个
C、至少1个D、不存在

查看答案和解析>>

同步练习册答案