【题目】已知
是定义在
上的奇函数,记
的导函数为
,当
时,满足
.若
使不等式
成立,则实数
的最小值为( )
A.
B.
C.
D. ![]()
科目:高中数学 来源: 题型:
【题目】学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数
与听课时间
(单位:分钟)之间的关系满足如图所示的图象,当
时,图象是二次函数图象的一部分,其中顶点
,过点
;当
时,图象是线段BC,其中
.根据专家研究,当注意力指数大于62时,学习效果最佳.要使得学生学习效果最佳,则教师安排核心内容的时间段为____________.(写成区间形式)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自2017年,大连“蜗享出行”正式引领共享汽车,改变人们传统的出行理念,给市民出行带来了诸多便利
该公司购买了一批汽车投放到市场给市民使用
据市场分析,每辆汽车的营运累计收入
单位:元
与营运天数
满足
.
要使营运累计收入高于1400元求营运天数的取值范围;
每辆汽车营运多少天时,才能使每天的平均营运收入最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的部分图像如图所示,考查下列说法:
![]()
①
的图像关于直线
对称
②
的图像关于点
对称
③若关于x的方程
在上
有两个不相等的实数根,则实数
的取值范围为![]()
④将函数
的图像向右平移
个单位可得到函数
的图像
其中正确个数的是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元。
(1)分别写出两类产品的收益与投资额的函数关系式;
(2)该家庭现有20万元资金,全部用于理财投资,怎样分配资金才能获得最大收益?其最大收益为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的三边长分别为
,
,
,M是AB边上的点,P是平面ABC外一点.给出下列四个命题:①若
平面ABC,则三棱锥
的四个面都是直角三角形;②若
平面ABC,且M是边AB的中点,则有
;③若
,
平面ABC,则
面积的最小值为
;④若
,P在平面ABC上的射影是
内切圆的圆心,则点P到平面ABC的距离为
.其中正确命题的序号是________.(把你认为正确命题的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知曲线
:
和曲线
:
,以极点
为坐标原点,极轴为
轴非负半轴建立平面直角坐标系.
(1)求曲线
和曲线
的直角坐标方程;
(2)若点
是曲线
上一动点,过点
作线段
的垂线交曲线
于点
,求线段
长度的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com