精英家教网 > 高中数学 > 题目详情
求证:不论x取何值,多项式(x-1)(x-3)(x-4)(x-6)+10的值总大于0.
考点:综合法与分析法(选修)
专题:证明题,综合法
分析:用配方法将式子配方,然后根据配方后的形式,再由a2≥0这一性质即可证得.
解答: 证明:(x-1)(x-3)(x-4)(x-6)+10=(x2-7x+6)(x2-7x+12)+10=(x2-7x)2+18(x2-7x)+82
=(x2-7x+9)2+1>0,
∴不论x取何值,多项式(x-1)(x-3)(x-4)(x-6)+10的值总大于0.
点评:本题考查了配方法的运用,将多项式配方,可判断多项式的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四个结论:
①若k∈R,且k
b
=
0
,则k=0或
b
=
0
; 
②若
a
b
=0,则
a
=
0
b
=
0

③若不平行的两个非零向量
a
b
,满足|
a
|=|
b
|,则(
a
+
b
)•(
a
-
b
)=0; 
④若
a
b
平行,则
a
b
=±|
a
|•|
b
|.
其中正确的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列1,a1,a2,9是等差数列,数列1,b1,b2,b3,9是等比数列,则
b2
a1+a2
=(  )
A、-
3
10
B、
3
10
C、±
3
10
D、
9
10

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x+ax+3,(-1≤x<0)
bx-1,(0≤x≤1)
(a>0,且a≠1),若f(-1)=f(1),则logab=(  )
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

菱形ABCD边长为2,∠BAD=120°,点E,F分别别在BC,CD上,
BE
BC
DF
DC
,若
AE
AF
=1,
CE
CF
=-
3
2
,则λ+μ=(  )
A、
1
2
B、
3
2
C、
5
4
D、
7
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2-3x+2<0的解集为A={x|1<x<b}.
(1)求a,b的值.
(2)求函数f(x)=(2a+b)x+
25
(b-a)x+a
,(x∈A)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=
2
,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD的中点.
(Ⅰ)求证:PO⊥面ABCD;
(Ⅱ)求异面直线PB与CD所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知一艘我海监船O上配有雷达,其监测范围是半径为25km的圆形区域.一艘外籍轮船从位于海监船正东40km的A处出发,径直驶向位于海监船正北30km的B处岛屿,速度为28km/h.问:这艘外籍轮船能否被我海监船监测到?若能,持续时间多长?(要求用坐标法)

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体AC1中,E为BC中点,在棱CC1上求一点P,使平面A1B1P⊥平面C1DE;并说明原因.

查看答案和解析>>

同步练习册答案