精英家教网 > 高中数学 > 题目详情
设函数f(x)=xlnx,则(  )
A、x=1为f(x)的极大值点
B、x=1为f(x)的极小值点
C、x=
1
e
为f(x)的极大值点
D、x=
1
e
为f(x)的极小值点
考点:利用导数研究函数的极值
专题:导数的概念及应用
分析:确定函数的定义域,求导函数,确定函数的单调性,即可求得函数f(x)的极小值.
解答: 解:函数的定义域为(0,+∞)
求导函数,可得f′(x)=1+lnx
令f′(x)=1+lnx=0,可得x=
1
e

∴0<x<
1
e
时,f′(x)<0,x>
1
e
时,f′(x)>0
∴x=
1
e
时,函数取得极小值-
1
e

故选D.
点评:本题考查导数知识的运用,考查函数的极小值,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过点P(-2,3)的抛物线的标准方程是(  )
A、y2=-
9
2
x或x2=
4
3
y
B、y2=
9
2
x或x2=
4
3
y
C、y2=
9
2
x或x2=-
4
3
y
D、y2=-
9
2
x或x2=-
4
3
y

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
2x-a,x≤0
lnx,x>0
有两个不同的零点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,若∠A:∠B=1:1,a:c=2:3则cos2A的值为(  )
A、
2
3
B、
1
2
C、
1
3
D、
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数簇 fn(x)=x2-2(n+1)x+n2+5n-7(n∈N*).
(1)设曲线列Cn:y=fn(x)的顶点的纵坐标构成数列{an},求证:数列{an}为等差数列;
(2)设曲线列Cn:y=fn(x)的顶点到x轴的距离构成数列{bn},Sn为数列{bn}的前n项和,求S20

查看答案和解析>>

科目:高中数学 来源: 题型:

设[x]表示不大于x的最大整数,则对任意实数x,有(  )
A、[-x]=-[x]
B、[x+
1
2
]=[x]
C、[2x]=2[x]
D、[x]+[x+
1
2
]=[2x]

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校为调查高二年级学生的身高情况,按随机抽样的方法抽取200名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有48人.

(Ⅰ)在抽取的学生中,身高不超过165cm的男、女生各有多少人?并估计男生的平均身高.
(Ⅱ)在上述200名学生中,从身高在170~175cm之间的学生按男、女性别分层抽样的方法,抽出7人,从这7人中选派4人当旗手,求4人中至少有一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

cos
31π
6
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆x2+my2=1的焦点在y轴上,焦距是短轴长的两倍,则m的值为(  )
A、
1
5
B、
1
2
C、
1
4
D、4

查看答案和解析>>

同步练习册答案