【题目】已知函数
.
(1)求函数
在
上的单调递增区间;
(2)将函数
的图象向左平移
个单位长度,再将图象上所有点的横坐标伸长到原来的
倍(纵坐标不变),得到函数
的图象.求证:存在无穷多个互不相同的整数
,使得
.
【答案】(1)单调递增区间为
;(2)见解析.
【解析】
(1)利用二倍角的降幂公式以及辅助角公式可将函数
的解析式化简为
,然后求出函数
在
上的单调递增区间
,与定义域取交集可得出答案;
(2)利用三角函数图象变换得出
,解出不等式
的解集
,可得知对
中的任意一个
,每个区间
内至少有一个整数
使得
,从而得出结论.
(1)![]()
.
令
,解得
,
所以,函数
在
上的单调递增区间为
,
,因此,函数
在
上的单调递增区间为
;
(2)将函数
的图象向左平移
个单位长度,得到函数
的图象,
再将图象上所有点的横坐标伸长到原来的
倍(纵坐标不变),得到函数
的图象,
由
,
对于
中的任意一个
,区间
长度始终为
,大于
,
每个区间
至少含有一个整数,
因此,存在无穷多个互不相同的整数
,使得
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C的参数方程为
(
为参数),以平面直角坐标系的原点O为极点,x轴正半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)过点
,倾斜角为
的直线l与曲线C相交于M,N两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若动点
到定点
与定直线
的距离之和为
.
(1)求点
的轨迹方程,并在答题卡所示位置画出方程的曲线草图;
(2)(理)记(1)得到的轨迹为曲线
,问曲线
上关于点
对称的不同点有几对?请说明理由.
(3)(文)记(1)得到的轨迹为曲线
,若曲线
上恰有三对不同的点关于点
对称,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人上午7时乘船出发,以匀速
海里/小时
从
港前往相距50海里的
港,然后乘汽车以匀速
千米/小时(
)自
港前往相距
千米的
市,计划当天下午4到9时到达
市.设乘船和汽车的所要的时间分别为
、
小时,如果所需要的经费
(单位:元)
![]()
(1)试用含有
、
的代数式表示
;
(2)要使得所需经费
最少,求
和
的值,并求出此时的费用.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
,对任意
都有
,(其中k、b、p是常数).
(1)当
,
,
时,求
;
(2)当
,
,
时,若
,
,求数列
的通项公式;
(3)若数列
中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当
,
,
时,设
是数列
的前n项和,
,试问:是否存在这样的“封闭数列”
,使得对任意
,都有
,且
.若存在,求数列
的首项
的所有取值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥S-ABCD的底面为正方形,![]()
,AC与BD交于E,M,N分别为SD,SA的中点,
.
![]()
(1)求证:平面
平面SBD;
(2)求直线BD与平面CMN所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年,国家逐步推行全新的高考制度.新高考不再分文理科,某省采用
模式,其中语文、数学、外语三科为必考科目,每门科目满分均为
分.另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物
门科目中自选
门参加考试(
选
),每门科目满分均为
分.为了应对新高考,某高中从高一年级
名学生(其中男生
人,女生
人)中,采用分层抽样的方法从中抽取
名学生进行调查,其中,女生抽取
人.
(1)求
的值;
(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的
名学生进行问卷调查(假定每名学生在“物理”和“地理”这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的一个不完整的
列联表,请将下面的
列联表补充完整,并判断是否有
的把握认为选择科目与性别有关?说明你的理由;
选择“物理” | 选择“地理” | 总计 | |
男生 |
| ||
女生 |
| ||
总计 |
(3)在抽取到的
名女生中,按(2)中的选课情况进行分层抽样,从中抽出
名女生,再从这
名女生中抽取
人,设这
人中选择“物理”的人数为
,求
的分布列及期望.附:
,![]()
| 0.05 | 0.01 | 0.005 | 0.001 |
| 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,曲线
由两个椭圆
:
和椭圆
:
组成,当
成等比数列时,称曲线
为“猫眼曲线”.
![]()
(1)若猫眼曲线
过点
,且
的公比为
,求猫眼曲线
的方程;
(2)对于题(1)中的求猫眼曲线
,任作斜率为
且不过原点的直线与该曲线相交,交椭圆
所得弦的中点为M,交椭圆
所得弦的中点为N,求证:
为与
无关的定值;
(3)若斜率为
的直线
为椭圆
的切线,且交椭圆
于点
,
为椭圆
上的任意一点(点
与点
不重合),求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com