精英家教网 > 高中数学 > 题目详情
5.执行如图所示的程序框图,如果输出S=132,则判断框中应填(  )
A.i≥10?B.i≥11?C.i≥12?D.i≤11?

分析 解答时可模拟运行程序,即可得出结论.

解答 解:程序执行过程中的数据变化如下:i=12,s=1,
12≥11,s=12,i=11,
11≥11,s=132,i=10,
10≥11,不成立,输出s=132.
故选:B.

点评 本题考查了程序框图中的当型循环结构,当型循环结构是先判断再执行,若满足条件则进入循环体,否则结束循环.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知极坐标系的极点O在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的参数方程为:$\left\{{\begin{array}{l}{x=1+2mt}\\{y=2t\;\;\;\;\;\;\;}\end{array}}\right.$(其中t为参数),曲线C的极坐标方程为:ρ=4cosθ,
(1)写出C的直角坐标方程,并指出C是什么曲线;
(2)设直线l与曲线C相交于P、Q两点,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知两点A(2,-1),B(-1,2),若直线y=kx-1与线段AB相交,则斜率k的取值范围是k≤-3或k≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点D(-2,0)为椭圆C的左顶点,点D与椭圆C的短轴端点的距离为$\sqrt{5}$,过点M(1,0)的直线l与椭圆C交于A,B两点.
(1)求椭圆C的标准方程;
(2)是否存在直线l,使得$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{MB}$,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆锥的顶角120°,母线长为2,则过顶点的截面中,面积最大的截面面积是    2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知i为虚数单位,$(2+i)\overline z=-1+2i$,则复数z=(  )
A.iB.-iC.$\frac{4}{3}+i$D.$\frac{4}{3}-i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,BC=1,CC1=2,$B{C_1}=\sqrt{3}$.
(Ⅰ)求证:BC1⊥平面ABC;
(Ⅱ)当$AB=\frac{3}{2}$时,求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设等差数列{an}中首项为a1=-3,公差为d,且从第5项开始是正数,则公差d的范围是(  )
A.$(\frac{3}{4},1)$B.$[\frac{3}{4},1)$C.$(\frac{3}{4},1]$D.$[\frac{3}{4},1]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{|lnx|(0<x≤3)}\\{f(x-3)(3<x≤6)}\end{array}\right.$ 若函数g(x)=f(x)-ax有4个零点,则实数a的取值范围是(  )
A.(0,$\frac{ln3}{6}$]∪[$\frac{ln3}{3}$,$\frac{1}{e}$)B.(0,$\frac{ln3}{6}$]C.(0,e)D.[$\frac{ln3}{6}$,e)

查看答案和解析>>

同步练习册答案