精英家教网 > 高中数学 > 题目详情

【题目】设向量 =(sinx,﹣1), =( cosx,﹣ ),函数f(x)=( +
(1)求函数f(x)的单调递增区间;
(2)当x∈(0, )时,求函数f(x)的值域.

【答案】
(1)解:∵ =(sinx,﹣1), =( cosx,﹣ ),

∴f(x)=( + =(sinx+ cosx,﹣ )(sinx,﹣1)

=sin2x+ sinxcos+ = (1﹣cos2x)+ sin2x+

= sin2x﹣ cos2x)+2

=sin(2x﹣ )+2,

由2kπ﹣ ≤2x﹣ ≤2kπ+

解得:kπ﹣ ≤x≤kπ+

故函数的递增区间是[kπ﹣ ,kπ+ ]


(2)解:∵x∈(0, ),

∴2x﹣ ∈(﹣ ),

故sin(2x﹣ )的最大值是1,sin(2x﹣ )>sin(﹣ )=﹣

故函数的最大值是3,最小值大于

即函数的值域是( ,3]


【解析】(1)利用向量数量积公式化简函数,结合正弦函数的单调增区间,可得f(x)的单调增区间;(2)求出(2x﹣ )的范围,从而确定f(x)的范围,化简函数,可得函数的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a1=1,前n项和Sn满足条件 =4,n=1,2,…
(1)求数列{an}的通项公式和Sn
(2)记bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在高二年级开设选修课,其中数学选修课开了三个班.选课结束后,有四名选修英语的同学要求改修数学,但数学选修每班至多可再接收两名同学,那么安排好这四名同学的方案有(
A.72种
B.54种
C.36种
D.18种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,PA⊥PC,PB=AB=BC=2,∠ABC=120°, ,D为AC上一点,且AD=3DC.
(1)求证:PD⊥平面ABC;
(2)若E为PA中点,求直线CE与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在[0,+∞)上是增函数,g(x)=﹣f(|x|),若g(lgx)>g(1),则x的取值范围是(
A.(0,10)
B.(10,+∞)
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为 ,{bn}为等差数列,且b1=4,b3=10,则数列 的前n项和Tn=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=2x2+bx+c,不等式f(x)<0的解集为(0,5).
(1)求b,c的值;
(2)若对任意x∈[﹣1,1],不等式f(x)+t≤2恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的三个内角A,B,C的对边长分别为a,b,c,R是△ABC的外接圆半径,有下列四个条件: ⑴(a+b+c)(a+b﹣c)=3ab
⑵sinA=2cosBsinC
⑶b=acosC,c=acosB

有两个结论:甲:△ABC是等边三角形.乙:△ABC是等腰直角三角形.
请你选取给定的四个条件中的两个为条件,两个结论中的一个为结论,写出一个你认为正确的命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1:x﹣2y+3=0和l2:x+2y﹣9=0的交点为A.
(1)求过点A,且与直线2x+3y﹣1=0平行的直线方程;
(2)求过点A,且倾斜角为直线l1倾斜角2倍的直线方程.

查看答案和解析>>

同步练习册答案