精英家教网 > 高中数学 > 题目详情
设集合M={y|y=2sinx,x∈[-
π
2
π
2
]},N={x|y=log2(x-1)},则M∩N=(  )
A、{x|1<x≤5}
B、{x|-1<x≤0}
C、{x|-2≤x≤0}
D、{x|1<x≤2}
考点:交集及其运算
专题:集合
分析:求出M中y的范围与N中x的范围确定出M与N,找出两集合的交集即可.
解答: 解:由M中y=2sinx,x∈[-
π
2
π
2
],得到-2≤y≤2,即M={y|-2≤y≤2},
由N中y=log2(x-1),得到x-1>0,即x>1,
∴N={x|x>1},
则M∩N={x|1<x≤2}.
故选:D.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某地高考规定每一考场安排24名考生,编成六行四列.若来自同一学校的甲、乙两名学生同时排在“××考点××考场”,那么他们两人前后左右均不相邻的不同的坐法总数有
 
 种.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是某空间几何体的直观图,则该几何体的俯视图是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x
1
3
在原点处的切线方程是(  )
A、x=0B、y=0
C、x=0或y=0D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

两名学生参加考试,随机变量x代表通过的学生数,其分布列为
x012
p
1
3
1
2
1
6
那么这两人通过考试的概率最小值为(  )
A、
1
6
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A,B,C的对边是a,b,c,且a,b,c成等比数列,则函数y=sinB+cosB的取值范围是(  )
A、[-
2
2
]
B、(1,
2
]
C、[1,
2
]
D、(0,
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%,现有四个奖励模型:y=
1
4
x,y=lgx+1,y=(
3
2
x,y=
x
,其中能符合公司要求的模型是(  )
A、y=
1
4
x
B、y=lgx+1
C、y=(
3
2
x
D、y=
x

查看答案和解析>>

科目:高中数学 来源: 题型:

平行四边形ABCD中,
AB
BD
=0,沿BD将四边形折起成直二面角A一BD-C,且2|
AB
|2+|
BD
|2=4,则三棱锥A-BCD的外接球的表面积为(  )
A、
π
2
B、
π
4
C、4π
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}为等差数列,且a3=5,a7=2a4-1.
(Ⅰ)求数列{an}的通项公式及其前n项和Sn
(Ⅱ)若数列{bn}满足b1+4b2+9b3+…+n2bn=an,设数列{bn}的前n项和为Tn,当n≥2时,证明Tn
5
2

查看答案和解析>>

同步练习册答案