精英家教网 > 高中数学 > 题目详情
20.已知$tan(α-\frac{π}{4})=\frac{1}{3}$,则sin2α的值等于$\frac{4}{5}$.

分析 利用正切公式可得tanα,再利用倍角公式、同角三角函数基本关系式即可得出.

解答 解:∵$tan(α-\frac{π}{4})=\frac{1}{3}$=$\frac{tanα-1}{1+tanα}$,解得tanα=2.
则sin2α=$\frac{2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2tanα}{ta{n}^{2}α+1}$=$\frac{4}{5}$.
故答案为:$\frac{4}{5}$.

点评 本题考查了正切公式、倍角公式、同角三角函数基本关系式,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=-x3+ax2+1(a∈R).
(1)若函数f(x)在(0,$\frac{2}{3}$)上递增,在($\frac{2}{3}$,+∞)上递减,求a的值;
(2)在(1)的条件下,是否存在实数m,使得函数g(x)=x4-5x3+(2-m)x2+1(m∈R)的图象与函数y=f(x)的图象恰有三个交点,若存在,请求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知M=$[\begin{array}{l}{1}&{2}\\{2}&{1}\end{array}]$,向量β=$[\begin{array}{l}{1}\\{7}\end{array}]$,求M50β.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如图:

假设甲、乙两种酸奶独立销售且日销售量相互独立.
(Ⅰ)写出频率分布直方图(甲)中的a的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为$s_1^2$,$s_2^2$,试比较$s_1^2$与$s_2^2$的大小;(只需写出结论)
(Ⅱ)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率;
(Ⅲ)设X表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.${(\frac{1}{x}-ax)^6}$展开式的常数项为-160,则a的值为(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图是某校限时12min跑体能达标测试中计算每一位参加测试的学生所跑路程S(单位:m)及时间t(单位:min)的流程图,每跑完一圈(400m),计一次路程,12min内达标或超过12min则停止计程.某同学成功通过该项测试,则该同学所跑路程至少为2000m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{{\begin{array}{l}{{2^x},({x≤0})}\\{{x^{\frac{1}{3}}},({x>0})}\end{array}}$,则f(f(-3))=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,点C是以A,B为直径的圆O上不与A,B重合的一个动点,S是圆O所在平面外一点,且总有SC⊥平面ABC,M是SB的中点,AB=SC=2.
(1)求证:OM⊥BC;
(2)当四面体S-ABC的体积最大时,设直线AM与平面ABC所成的角为α,求tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x)=sin(x+$\frac{π}{6}$),若cosα=$\frac{3}{5}$(0<α<$\frac{π}{2}$),则f(α+$\frac{π}{12}$)=$\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

同步练习册答案