分析 (Ⅰ)按照题目要求想结果即可.
(Ⅱ)设事件A:在未来的某一天里,甲种酸奶的销售量不高于20箱;事件B:在未来的某一天里,乙种酸奶的销售量不高于20箱;事件C:在未来的某一天里,甲、乙两种酸奶的销售量恰好一个高于20箱且另一个不高于20箱.求出P(A),P(B),P(C).
(Ⅲ)X的可能取值为0,1,2,3,求出概率,得到分布列,然后求解期望.
解答 (共13分)
解:(Ⅰ)a=0.015; …(2分)
s12>s22.…(4分)
(Ⅱ)设事件A:在未来的某一天里,甲种酸奶的销售量不高于20箱;
事件B:在未来的某一天里,乙种酸奶的销售量不高于20箱;
事件C:在未来的某一天里,甲、乙两种酸奶的销售量恰好一个高于20箱且另一个不高于20箱.则P(A)=0.20+0.10=0.3,P(B)=0.10+0.20=0.3.…(6分)
所以 $P(C)=P(\overline A)P(B)+P(A)P(\overline B)=0.42$.…(8分)
(Ⅲ)由题意可知,X的可能取值为0,1,2,3.…(9分)
P(X=0)=C30×0.30×0.73=0.343,
P(X=1)=C31×0.31×0.72=0.441,
P(X=2)=C32×0.32×0.71=0.189,
P(X=3)=C33×0.33×0.70=0.027.
所以X的分布列为
| X | 0 | 1 | 2 | 3 |
| P | 0.343 | 0.441 | 0.189 | 0.027 |
点评 本题考查离散型随机变量的分布列期望的求法,独立重复试验概率的求法,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{27}$ | B. | 1 | C. | $\frac{32}{27}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1)(2)(3) | B. | (2)(3)(4) | C. | (2)(4) | D. | (1)(3) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,3] | B. | (1,3) | C. | [-3,-1] | D. | (-3,-1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com