精英家教网 > 高中数学 > 题目详情
7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,过椭圆C的左焦点且倾斜角为60°的直线与圆x2+y2=a2相交,所得弦的长度为$\sqrt{7}$
(1)求椭圆C的方程;
(2)设椭圆C的上顶点为M,若直线l:y=kx+m与椭圆C交于两点A,B(A,B都不是上顶点),且直线MA与MB的斜率之积为$\frac{3}{4}$.
(a)求证:直线l过定点;
(b)求△MAB面积的最大值.

分析 (1)运用离心率公式和直线和圆相交的弦长公式,解方程可得a,b,c,进而得到椭圆方程;
(2)(a)将直线y=kx+m代入椭圆方程,运用韦达定理,再由直线的斜率公式,化简整理可得m=-2,进而得到直线恒过定点(0,-2):
(b)运用弦长公式和点到直线的距离公式,由三角形的面积公式,化简整理,结合换元法和基本不等式,即可得到所求最大值.

解答 解:(1)由题意可得e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,
椭圆C的左焦点(-c,0)且倾斜角为60°的直线方程为y=$\sqrt{3}$(x+c),
圆心到直线的距离为d=$\frac{\sqrt{3}c}{\sqrt{1+3}}$=$\frac{\sqrt{3}c}{2}$,
由圆的弦长公式可得$\sqrt{7}$=2$\sqrt{{a}^{2}-\frac{3{c}^{2}}{4}}$,
解得a=2,b=1,c=$\sqrt{3}$,
即有椭圆C的方程为$\frac{{x}^{2}}{4}$+y2=1;
(2)(a)证明:由题意可得M(0,1),
y=kx+m代入椭圆方程x2+4y2-4=0,
即有(1+4k2)x2+8kmx+4m2-4=0,
△=64k2m2-4(1+4k2)(4m2-4)>0,
化为1+4k2>m2
设A(x1,y1),B(x2,y2),
x1+x2=-$\frac{8km}{1+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$,
由题意可得kMA•kMB=$\frac{{y}_{1}-1}{{x}_{1}}$•$\frac{{y}_{2}-1}{{x}_{2}}$=$\frac{k{x}_{1}+m-1}{{x}_{1}}$•$\frac{k{x}_{2}+m-1}{{x}_{2}}$
=$\frac{{k}^{2}{x}_{1}{x}_{2}+k(m-1)({x}_{1}+{x}_{2})+(m-1)^{2}}{{x}_{1}{x}_{2}}$
=$\frac{{k}^{2}(4{m}^{2}-4)-8{k}^{2}m(m-1)+(1+4{k}^{2})(m-1)^{2}}{4{m}^{2}-4}$=$\frac{3}{4}$,
即有m=-2.
则直线为y=kx-2,即有直线l恒过定点(0,-2);
(b)由(a)可得1+4k2>4,可得k>$\frac{\sqrt{3}}{2}$或k<-$\frac{\sqrt{3}}{2}$;
x1+x2=$\frac{16k}{1+4{k}^{2}}$,x1x2=$\frac{12}{1+4{k}^{2}}$,
可得|AB|=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{1+{k}^{2}}$•$\sqrt{\frac{256{k}^{2}}{(1+4{k}^{2})^{2}}-\frac{48}{1+4{k}^{2}}}$=$\sqrt{1+{k}^{2}}$•$\frac{4\sqrt{4{k}^{2}-3}}{1+4{k}^{2}}$,
M到直线的距离为$\frac{3}{\sqrt{1+{k}^{2}}}$,
可得△MAB面积为S=$\frac{1}{2}$•$\frac{3}{\sqrt{1+{k}^{2}}}$•$\sqrt{1+{k}^{2}}$•$\frac{4\sqrt{4{k}^{2}-3}}{1+4{k}^{2}}$
=6•$\frac{\sqrt{4{k}^{2}-3}}{4{k}^{2}+1}$,令$\sqrt{4{k}^{2}-3}$=t(t>0),可得4k2=3+t2
即有S=6•$\frac{t}{{t}^{2}+4}$=6•$\frac{1}{t+\frac{4}{t}}$≤6•$\frac{1}{2\sqrt{t•\frac{4}{t}}}$=$\frac{3}{2}$.
当且仅当t=$\frac{4}{t}$即t=2,k=±$\frac{\sqrt{7}}{2}$时,面积取得最大值$\frac{3}{2}$.

点评 本题考查椭圆的方程的求法,注意运用离心率公式和圆的弦长公式,考查直线恒过定点的求法,注意运用联立直线方程和椭圆方程,运用韦达定理和直线的斜率公式,考查三角形的面积的最值的求法,注意运用弦长公式和点到直线的距离公式,运用基本不等式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在等比数列{an}中,公比为q.前n项和为Sn,若a1=8,an=$\frac{1}{4}$,Sn=$\frac{63}{4}$,则n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示的几何体的左视图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.掷红、蓝两颗骰子,记事件A为“蓝色骰子的点数为4或6”,事件B为“两颗骰子的点数之和大于8”.求
(1)事件A发生的条件下,事件B发生的概率.
(2)事件B发生的条件下,事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.点P是线段AB上的一个动点,AB=a,在AB同侧以AP、PB为边分别作等边△APM和△BPN,求线段MN的中点Q的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,已知正四棱柱ABCD-A1B1C1D1的体积为36,点E,F分别为棱B1B,C1C上的点(异于端点),且EF∥BC,则四棱锥A1-AEFD的体积为12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.观察下列式子f1(x,y)=$\frac{x}{3y+3}$,f2(x,y)=$\frac{3x}{9{y}^{2}+7}$,f3(x,y)=$\frac{5x}{27{y}^{3}+13}$,f4(x,y)=$\frac{7x}{81{y}^{4}+23}$,…,根据以上事实,由归纳推理可得,当n∈N*,时,fn(x,y)=$\frac{2n-1}{(3y)^{n}+{2}^{n}+2n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.当实数x,y满足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$时,ax+y≤4恒成立,则实数a的取值范围是(-∞,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点作与x轴垂直的直线l,直线l与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若3|AB|=2|CD|,则双曲线的离心率为$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

同步练习册答案