如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器厚度,则球的体积为( )
![]()
A.
cm3 B.
cm3
C.
cm3 D.
cm3
科目:高中数学 来源:2014年高考数学人教版评估检测 第七章 立体几何(解析版) 题型:填空题
如图所示,正四棱锥P-ABCD的底面积为3,体积为
,E为侧棱PC的中点,则PA与BE所成的角为__________.
![]()
查看答案和解析>>
科目:高中数学 来源:2014年高考数学三轮冲刺模拟 立体几何(解析版) 题型:解答题
如图,三棱柱ABC—A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.
(1)求证:平面AA1B1B⊥平面BB1C1C;
(2)若AB=2,求三棱柱ABC—A1B1C1的体积.
![]()
查看答案和解析>>
科目:高中数学 来源:2014年高考数学三轮冲刺模拟 立体几何(解析版) 题型:填空题
已知函数f(x)=Asin
(A>0,ω>0)的最小正周期为2,且f(0)=
,则函数f(3)=________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学三轮冲刺模拟 概率与统计(解析版) 题型:填空题
已知向量a=(x,-1),b=(3,y),其中x随机选自集合{-1,1,3},y随机选自集合{1,3},那么a⊥b的概率是________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学三轮冲刺模拟 数列、推理与证明(解析版) 题型:解答题
(2013·安徽高考)设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=
x+an+1cos x-an+2sin x满足f′
=0.
(1)求数列{an}的通项公式;
(2)若bn=2
,求数列{bn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源:2014年吉林省延边州高考复习质量检测理科数学试卷(解析版) 题型:解答题
如图1,在△ABC中,BC=3,AC=6,∠C=90°,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2。
![]()
(1)求证:BC⊥平面A1DC;
(2)若CD=2,求BE与平面A1BC所成角的正弦值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com