精英家教网 > 高中数学 > 题目详情
2.已知数列{an} 的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)令cn=$\frac{{{{({a_n}+1)}^{n+1}}}}{{3{{({b_n}+2)}^n}}}$,求数列{cn}的前n项和Tn

分析 (Ⅰ)求出数列{an}的通项公式,再求数列{bn}的通项公式;
(Ⅱ)求出数列{cn}的通项,利用错位相减法求数列{cn}的前n项和Tn

解答 解:(Ⅰ)∵数列{an}的前n项和${S_n}=3{n^2}+8n$,
∴a1=11.
当n≥2时,${a_n}={S_n}-{S_{n-1}}=3{n^2}+8n-3{(n-1)^2}-8(n-1)=6n+5$.
又∵an=6n+5对n=1也成立所以an=6n+5,{bn}是等差数列,设公差为d,则an=bn+bn+1=2bn+d.
当n=1时,2b1=11-d;当n=2时,2b2=17-d
由$\left\{\begin{array}{l}2{b_1}=11-d\\ 2{b_2}=17-d\end{array}\right.$,
解得d=3,
所以数列{bn}的通项公式为${b_n}=\frac{{{a_n}-d}}{2}=3n+1$;
(Ⅱ)由${c_n}=\frac{{{{({a_n}+1)}^{n+1}}}}{{3{{({b_n}+2)}^n}}}=\frac{{{{(6n+6)}^{n+1}}}}{{3{{(3n+3)}^n}}}=(n+1)•{2^{n+1}}$,
于是,${T_n}=2•{2^2}+3•{2^3}+4•{2^4}+…+(n+1)•{2^{n+1}}$,
两边同乘以2,得$2{T_n}=2•{2^3}+3•{2^4}+…+n•{2^{n+1}}+(n+1)•{2^{n+2}}$.
两式相减,得$-{T_n}=8-(n+1)•{2^{n+2}}+({{2^3}+{2^4}+…+{2^{n+1}}})$=$8-(n+1)•{2^{n+2}}+\frac{{8({1-{2^{n-1}}})}}{1-2}$=-n•2n+2
所以,${T_n}=n•{2^{n+2}}$.

点评 本题考查数列的通项与求和,着重考查等差数列的通项与错位相减法的运用,考查分析与运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在△ABC中,有一个内角为30°,“∠A>30°”是“sinA>$\frac{1}{2}$”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|x2-5x-6≤0},B={x|x-3a<0},
(Ⅰ)当a=$\frac{1}{3}$时,求A∩B;
(Ⅱ)若A∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=|x2-4x+3|,x∈R.
(1)在区间[0,4]上画出函数f(x)的图象;
(2)写出该函数在R上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知等差数列{an}前9项的和为27,a10=8,则a100=98.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.关于x的不等式|x+10|≥8的解集为(-∞,-18]∪[-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.学校对同时从高一,高二,高三三个不同年级的某些学生进行抽样调查,从各年级抽出人数如表所示.工作人员用分层抽样的方法从这些学生中共抽取6人进行调查
年级高一高二高三
数量50150100
(1)求这6位学生来自高一,高二,高三各年级的数量;
(2)若从这6位学生中随机抽取2人再做进一步的调查,求这2人来自同一年级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,|${\overrightarrow{BA}}$|=1,|${\overrightarrow{AC}}$|=2,且$\overrightarrow{BA}$与$\overrightarrow{AC}$的夹角为$\frac{2π}{3}$,则BC边上的中线AD的长为$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知y=f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-2x.
(1)画出f(x)的简图,并求f(x)的解析式;
(2)利用图象讨论方程f(x)=k的根的情况.(只需写出结果,不要解答过程).

查看答案和解析>>

同步练习册答案