精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=ln(x+$\sqrt{{x}^{2}+1}$)+ax7+bx3-4,其中a,b为常数,若f(-3)=4,则f(3)=-12.

分析 由f(-3)=ln(-3+$\sqrt{10}$)-37a-33b-4=4,得到[ln(3+$\sqrt{10}$)+37a+33b=-8,从而求出f(3)的值即可.

解答 解:∵函数f(x)=ln(x+$\sqrt{{x}^{2}+1}$)+ax7+bx3-4,其中a,b为常数,
由f(-3)=4,
得:则f(-3)=ln(-3+$\sqrt{10}$)-37a-33b-4=4,
∴[ln(3+$\sqrt{10}$)+37a+33b=-8,
∴f(3)=ln(3+$\sqrt{10}$))+37a+33b-4=-8-4=-12,
故答案为:-12.

点评 本题考察了求函数值问题,考察对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知直线l:ax-y+2=0与圆M:x2+y2-4y+3=0的交点为A、B,点C是圆M上的一动点,设点P(0,-1),$\left|{\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}}\right|$的最大值为(  )
A.12B.10C.9D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知b>a>$\frac{1}{2}$,且a2+b+k=a,b2+a+k=b,求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.由直线y=x+1上的点向圆C:x2+y2-6x+8=0引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人从1到840进行编号,求得间隔数k=$\frac{840}{42}$=20,即每20人抽取一个人,其中21号被抽到,则抽取的42人中,编号落入区间[421,720]的人数为(  )
A.12B.13C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过点A的直线l与抛物线y2=2x有且只有一个公共点,这样的l的条数是(  )
A.0或1B.1或2C.0或1或2D.1或2或3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=$\frac{1}{3}$x3+x2+x,g(x)=2x2+4x十c.
(I)x=-1是函数f(x)的极值点吗?说明理由;
(Ⅱ)当x∈[-3,4]对,函数f(x)与g(x)的图象有两个公共点,求c的取值范围.
(Ⅲ)证明:当x∈R时,ex+x2-1≥f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设F(x)=${∫}_{0}^{x}$tf(x2-t2)dt,f(x)连续,则F′(x)=xf(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知常数m满足-2≤m≤2,则不等式x+$\frac{1}{x}$≥m的解集为当m=-2时,(0,+∞)∪{-1}; 当m≠-2时,(0,+∞).

查看答案和解析>>

同步练习册答案