分析 由f(-3)=ln(-3+$\sqrt{10}$)-37a-33b-4=4,得到[ln(3+$\sqrt{10}$)+37a+33b=-8,从而求出f(3)的值即可.
解答 解:∵函数f(x)=ln(x+$\sqrt{{x}^{2}+1}$)+ax7+bx3-4,其中a,b为常数,
由f(-3)=4,
得:则f(-3)=ln(-3+$\sqrt{10}$)-37a-33b-4=4,
∴[ln(3+$\sqrt{10}$)+37a+33b=-8,
∴f(3)=ln(3+$\sqrt{10}$))+37a+33b-4=-8-4=-12,
故答案为:-12.
点评 本题考察了求函数值问题,考察对数函数的性质,是一道基础题.
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 10 | C. | 9 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 13 | C. | 14 | D. | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com