精英家教网 > 高中数学 > 题目详情
19.已知$f(x)=\sqrt{3}sinxcosx-{sin^2}x$,把f(x)的图象向右平移$\frac{π}{6}$个单位,再向上平移$\frac{1}{2}$个单位,得到y=g(x)的图象,则(  )
A.g(x)为奇函数B.g(x)为偶函数
C.g(x)在$[0,\frac{π}{3}]$上单调递增D.g(x)的一个对称中心为$(-\frac{π}{2},0)$

分析 将f(x)化简,根据平移变换的规律,求出g(x),结合三角函数的性质判断各选项即可.

解答 解:由$f(x)=\sqrt{3}sinxcosx-{sin^2}x$=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x-$\frac{1}{2}$=sin(2x+$\frac{π}{6}$)$-\frac{1}{2}$.
把f(x)的图象向右平移$\frac{π}{6}$个单位,可得sin[2(x-$\frac{π}{6}$)+$\frac{π}{6}$]$-\frac{1}{2}$=sin(2x-$\frac{π}{6}$)$-\frac{1}{2}$.再向上平移$\frac{1}{2}$个单位,
可得:sin(2x-$\frac{π}{6}$)=g(x).
∵g(-x)=sin(-2x-$\frac{π}{6}$)=-sin(2x+$\frac{π}{6}$)≠-g(x).∴A不对.
∵g(-x)=sin(-2x-$\frac{π}{6}$)=-sin(2x+$\frac{π}{6}$)≠g(x).∴B不对.
令$-\frac{π}{2}≤$2x-$\frac{π}{6}$$≤\frac{π}{2}$可得:$-\frac{π}{6}≤x≤\frac{π}{3}$,∴g(x)在$[0,\frac{π}{3}]$上单调递增,∴C对.
当x=$-\frac{π}{2}$时,可得f($-\frac{π}{2}$)=sin(-π-$\frac{π}{6}$)=$\frac{1}{2}$.∴$(-\frac{π}{2},0)$不是对称中心.∴D不对.
故选:C.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设P(x0,y0)是$f(x)=\sqrt{3}sin({2x+\frac{π}{3}})$图象上任一点,y=f(x)图象在P点处的切线的斜率不可能是(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在长方体ABCD-A1B1C1D1中,AB=BC=$\sqrt{2}$AA1,Q是棱CC1上的动点,则当BQ+QD1的长度取得最小值时,直线B1Q与直线AD所成角的正切值为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=2|x-a|是定义在R上的偶函数,则下列不等关系正确的是(  )
A.f(log23)<f(log0.55)<f(a)B.f(log0.55)<f(log23)<f(a)
C.f(a)<f(log23)<f(log0.55)D.f(a)<f(log0.55)<f(log23)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=-$\frac{{3{x^2}}}{2}$+lnx,g(x)=$\frac{1}{2}{x^2}$-2ax+1+lnx.
(Ⅰ)求函数f(x)的极值.
(Ⅱ)若x0是函数g(x)的极大值点,证明:x0lnx0-ax02>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列说法中正确的是(  )
A.当a>1时,函数y=ax是增函数,因为2>l,所以函数y=2x是增函数.这种推理是合情推理
B.在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c,则a∥c,将此结论放到空间中也是如此.这种推理是演绎推理
C.若分类变量X与Y的随机变量K2的观测值k越小,则两个分类变量有关系的把握性越小
D.$\int_{-1}^1{{x^3}dx=\frac{1}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若直线l:x+2y=0与圆C:(x-a)2+(y-b)2=10相切,且圆心C在直线l的上方,则ab的最大值为$\frac{25}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,菱ABCD与四边形BDEF相交于BD,∠ABC=120°,BF⊥平面ABCD,DE∥BF,BF=2DE,AF⊥FC,M为CF的中点,AC∩BD=G.
(I)求证:GM∥平面CDE;
(II)求直线AM与平面ACE成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在直角坐标平面内,如果两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于y轴对称,则称(P,Q)是函数y=f(x)的一对“偶点”(偶点(P,Q)与(Q,P)看作同一对偶点),已知函数f(x)=$\left\{\begin{array}{l}{kx-1,x≥0}\\{2{x}^{2}+4x+3,x<0}\end{array}\right.$有两对“偶点”,则实数k的取值范围是(  )
A.(-∞,-4-4$\sqrt{2}$)B.(-4+4$\sqrt{2}$,+∞)C.(-4-4$\sqrt{2}$,-4+4$\sqrt{2}$)D.(0,-4+4$\sqrt{2}$)

查看答案和解析>>

同步练习册答案