| A. | -2 | B. | -$\frac{3}{2}$ | C. | -$\frac{18}{13}$ | D. | 0 |
分析 由椭圆C1的长轴长为4且离心率为$\frac{\sqrt{3}}{2}$,可得2a=4,$\frac{c}{a}=\frac{\sqrt{3}}{2}$,a2=b2+c2,解得a,b,可得椭圆C1的标准方程为:$\frac{{x}^{2}}{4}$+y2=1.不妨设∠MC2N=2θ,由对称性可得:∠PC2M=∠PC2N=θ,可得$\overrightarrow{{C}_{2}M}$•$\overrightarrow{{C}_{2}N}$=4cos2θ-2=$\frac{8}{|P{C}_{2}{|}^{2}}$-2,再设点P(x,y),可得x2=4-4y2,点C2(0,-3),$|P{C}_{2}{|}^{2}$=-3(y-1)2+16,可得$|P{C}_{2}{|}^{2}$的最大值为16.即可得出$\overrightarrow{{C}_{2}M}$•$\overrightarrow{{C}_{2}N}$的最小值.
解答
解:由椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其长轴长为4且离心率为$\frac{\sqrt{3}}{2}$,
∴2a=4,$\frac{c}{a}=\frac{\sqrt{3}}{2}$,a2=b2+c2,解得a=2,b=1,
∴椭圆C1的标准方程为:$\frac{{x}^{2}}{4}$+y2=1.
不妨设∠MC2N=2θ,由对称性可得:∠PC2M=∠PC2N=θ,
则$\overrightarrow{{C}_{2}M}$•$\overrightarrow{{C}_{2}N}$=$|\overrightarrow{{C}_{2}M}|$|C2N|cos∠MC2N=$\sqrt{2}×\sqrt{2}cos2θ$=2(2cos2θ-1)
=4cos2θ-2=$4×(\frac{\sqrt{2}}{|P{C}_{2}|})^{2}$-2=$\frac{8}{|P{C}_{2}{|}^{2}}$-2,
再设点P(x,y),则$\frac{{x}^{2}}{4}+{y}^{2}$=1,可得x2=4-4y2,点C2(0,-3),
$|P{C}_{2}{|}^{2}$=x2+(y+3)2=4-4y2+y2+6y+9=-3(y-1)2+16,
∵-1≤y≤1,∴当y=1时,$|P{C}_{2}{|}^{2}$的最大值为16.
因此$\overrightarrow{{C}_{2}M}$•$\overrightarrow{{C}_{2}N}$的最小值为$\frac{8}{16}$-2=-$\frac{3}{2}$,
故选:B.
点评 本题考查了椭圆的定义标准方程及其性质、圆的标准方程及其性质、圆的切线的性质、数量积运算性质、两点之间的距离公式、二次函数的性质,考查了数形结合方法、推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{2}$+y2=1 | B. | $\frac{x^2}{3}$+$\frac{y^2}{2}$=1 | C. | $\frac{x^2}{4}$+y2=1 | D. | $\frac{x^2}{4}$+$\frac{y^2}{3}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{2}$ | B. | 4 | C. | 3 | D. | $\frac{12}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1]∪[3,+∞) | B. | [1,3] | C. | (3,+∞) | D. | (-∞,-1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-cos4x | B. | y=-cosx | C. | y=sin(x+$\frac{π}{4}$) | D. | y=-sinx |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com