精英家教网 > 高中数学 > 题目详情
7.设x∈R,向量$\overrightarrow a=(x,1)$,$\overrightarrow b=(1,-2)$,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$|{\overrightarrow a+2\overrightarrow b}|$=5.

分析 根据题意,由$\overrightarrow{a}$⊥$\overrightarrow{b}$,分析可得$\overrightarrow{a}$•$\overrightarrow{b}$=x-2=0,解可得x的值,即可得$\overrightarrow{a}$的坐标,由向量的坐标计算公式可得$\overrightarrow{a}$+2$\overrightarrow{b}$的坐标,由向量模的公式计算可得答案.

解答 解:根据题意,向量$\overrightarrow a=(x,1)$,$\overrightarrow b=(1,-2)$,
若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则有$\overrightarrow{a}$•$\overrightarrow{b}$=x-2=0,
解可得x=2,故$\overrightarrow{a}$=(2,1),
又由$\overrightarrow b=(1,-2)$,则$\overrightarrow{a}$+2$\overrightarrow{b}$=(4,3),
则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{9+16}$=5;
故答案为:5

点评 本题 考查向量的坐标运算,关键是求出向量$\overrightarrow{a}$+2$\overrightarrow{b}$的坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方式,按1~200编号分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为23,第9组抽取号码为43;若采用分层抽样,40-50岁年龄段应抽取12人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a、b、c分别是△ABC的内角A、B、C对的边,$b=\sqrt{3}$.
(1)若$C=\frac{5π}{6}$,△ABC的面积为$\frac{{\sqrt{3}}}{2}$,求c;
(2)若$B=\frac{π}{3}$,求2a-c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在锐角△ABC中,角A,B,C所对的边分别是a,b,c,已知$\overrightarrow m=({\sqrt{3}a,c}),\overrightarrow n=({sinA,cosC}),\overrightarrow m=3\overrightarrow n$.
(1)求C;
(2)求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,a,b,c分别是角A,B,C所对的边,且3cosBcosC+1=3sinBsinC+cos2A.
(Ⅰ)求角A的大小;
(Ⅱ)若△ABC的面积S=5$\sqrt{3}$,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在平行四边形ABCD中,M、N分别为AB、AD上的点,且$\overrightarrow{AM}$=$\frac{4}{5}$$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\frac{2}{3}$$\overrightarrow{AD}$,连接AC、MN交于P点,若$\overrightarrow{AP}$=λ$\overrightarrow{AC}$,则λ的值为(  )
A.$\frac{3}{5}$B.$\frac{3}{7}$C.$\frac{4}{11}$D.$\frac{4}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z在复平面内对应的点为(3,4),复数z的共轭复数为$\overline{z}$,那么z•$\overline{z}$等于(  )
A.5B.-7C.12D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.射洪县教育局从去年参加了计算机职称考试,并且年龄在[25,55]岁的教师中随机抽取n人的成绩进行了调查,得到如下统计表和各年龄段人数频率分布直方图:
组数分组低碳族的人数占本组的频率
第一组[25,30)1200.6
第二组[30,35)195p
第三组[35,40)1000.5
第四组[40,45)a0.4
第五组[45,50)30q
第六组[50,55)150.3
(1)补全频率分布直方图,并求a、p、q的值;
(2)若用以上数据来估计今年参考老师的过关情况,并将每组的频率视作对应年龄阶段老师的过关概率,考试是否过关互不影响.现有三名教师参加该次考试,年龄分别为41岁、47岁、53岁.记ξ为过关的人数,请利用相关数据求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某人上午7时乘船出发,以匀速v海里/小时(4≤v≤20)从A港前往相距50海里的B地,然后乘汽车以匀速ω千米/小时(30≤ω≤100)自B港前往相距300千米的C市,计划当天下午4到9时到达C市.设乘船和汽车的所要的时间分别为x、y小时,如果所需要的经费P=100+3(5-x)+(8-y)(单位:元)
(1)试用含有v、ω的代数式表示P;
(2)要使得所需经费P最少,求x和y的值,并求出此时的费用.

查看答案和解析>>

同步练习册答案