精英家教网 > 高中数学 > 题目详情
17.某人上午7时乘船出发,以匀速v海里/小时(4≤v≤20)从A港前往相距50海里的B地,然后乘汽车以匀速ω千米/小时(30≤ω≤100)自B港前往相距300千米的C市,计划当天下午4到9时到达C市.设乘船和汽车的所要的时间分别为x、y小时,如果所需要的经费P=100+3(5-x)+(8-y)(单位:元)
(1)试用含有v、ω的代数式表示P;
(2)要使得所需经费P最少,求x和y的值,并求出此时的费用.

分析 (1)分析题意,找出相关量之间的不等关系,
(2)求出x,y满足的约束条件,由约束条件画出可行域,要求走得最经济,即求可行域中的最优解,将目标函数看成是一条直线,分析目标函数p与直线截距的关系,进而求出最优.

解答 解:(1)由题意得:x=$\frac{50}{v}$,4≤v≤20,
y=$\frac{300}{ω}$,30≤ω≤100,
∴P=100+3(5-$\frac{50}{v}$)+(8-$\frac{300}{ω}$)=123-$\frac{150}{v}$-$\frac{300}{ω}$,其中,4≤v≤20,30≤ω≤100,
(2)由(1)可得2.5≤x≤12.5,3≤y≤10,①
由于汽车、乘船所需的时间和应在9至14小时之间,∴9≤x+y≤14   ②
因此满足①②的点(x,y)的存在范围是图中阴影部分
目标函数p=100+3(5-x)+(8-y)=123-3x-y,
当x=11,y=3时,p 最小,
此时,p=123-33-3=87

点评 本题考查不等式关系的建立,考查线性规划知识,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设x∈R,向量$\overrightarrow a=(x,1)$,$\overrightarrow b=(1,-2)$,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$|{\overrightarrow a+2\overrightarrow b}|$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(-x)=f(2+x),f(2)=1,则不等式f(x)<ex的解集为(  )
A.(-2,+∞)B.(2,+∞)C.(1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知公差不为零的等差数列{an}中,a1=1,且a1,a3,a9成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}}$+n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A是函数y=lg(6+5x-x2)的定义域,集合B是不等式x2-2x+1-a2≥0(a>0)的解集.p:x∈A,q:x∈B.
(1)若A∩B=∅,求a的取值范围;
(2)若¬p是q的充分不必要条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若x∈[1,+∞)时,关于x的不等式$\frac{xlnx}{x+1}$≤λ(x-1)恒成立,则实数λ的取值范围为[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.复数z=(a2-2a)+(a2-a-1)i的对应点在虚轴上,则实数a的值是0或2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在区间$[-\sqrt{2},\sqrt{2}]$中随机取一个实数k,则事件“直线y=kx与圆(x-3)2+y2=1相交”发生的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在区间[-1,1]上随机取一个数x,使sin$\frac{πx}{2}$的值介于0到$\frac{1}{2}$之间的概率为$\frac{1}{6}$.

查看答案和解析>>

同步练习册答案