精英家教网 > 高中数学 > 题目详情
16.已知sinα>0,且$\frac{{2tan\frac{α}{2}}}{{1-{{tan}^2}\frac{α}{2}}}<0$,则α所在象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用二倍角的正切公式求得tanα的符号,再根据sinα的符号,即可判断.

解答 解:∵tanα=$\frac{{2tan\frac{α}{2}}}{{1-{{tan}^2}\frac{α}{2}}}<0$,
∴tanα<0,
∵sinα>0,
∴α在第二象限,
故选B.

点评 本题主要考查象限角的符号问题,二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.(ln5)0+($\frac{9}{4}$)0.5+$\sqrt{(1-\sqrt{2})^{2}}$-2${\;}^{lo{g}_{4}2}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在复平面内,复数z满足z(1-i)=i,则复数z对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数$f(x)={2016^x}+{log_{2016}}(\sqrt{{x^2}+1}+x)-{2016^{-x}}$,则关于x的不等式f(3x+1)+f(x)>0的解集为(  )
A.(-∞,0)B.(0,+∞)C.$(-∞,-\frac{1}{4})$D.$(-\frac{1}{4},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C的对边分别是a,b,c,且$\sqrt{3}a(1-2{sin^2}\frac{C}{2})=(2b-\sqrt{3}c)cosA$.
(1)求角A的大小;
(2)若$b=2\sqrt{3},c=4$,D是BC的中点,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设x,y∈R,则x>y>0是|x|>|y|的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)的定义域为R,其导函数为f′(x).对任意的x∈R,总有f(-x)+f(x)=$\frac{{x}^{2}}{2}$,b=1;当x∈(0,+∞)时,f′(x)<$\frac{x}{2}$.若f(4-m)-f(m)≥4-2m,则实数m的取值范围是(  )
A.[1,+∞)B.(-∞,1]C.(-∞,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.两平面α,β的法向量分别为$\overrightarrow u=({3,-1,z}),\overrightarrow v=({-2,-y,1})$,若α⊥β,则y+z的值是(  )
A.-3B.6C.-6D.-12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某几何体的正视图与俯视图如图所示,若俯视图中的多边形为正六边形,则该几何体的侧视图的面积为$\frac{15}{2}$.

查看答案和解析>>

同步练习册答案