精英家教网 > 高中数学 > 题目详情
5.两平面α,β的法向量分别为$\overrightarrow u=({3,-1,z}),\overrightarrow v=({-2,-y,1})$,若α⊥β,则y+z的值是(  )
A.-3B.6C.-6D.-12

分析 由面面垂直的性质得$\overrightarrow{μ}•\overrightarrow{v}$=-6+y+z=0,由此能求出y+z.

解答 解:∵平面α,β的法向量分别为$\overrightarrow u=({3,-1,z}),\overrightarrow v=({-2,-y,1})$,
α⊥β,
∴$\overrightarrow{μ}•\overrightarrow{v}$=-6+y+z=0,
∴y+z=6.
故选:B.

点评 本题考查两数和的求法,是基础题,解题时要认真审题,注意空间中面面垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.数列{an}满足(-1)nan-an-1=2n,n≥2,则{an}的前100项和为(  )
A.-4750B.4850C.-5000D.4750

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知sinα>0,且$\frac{{2tan\frac{α}{2}}}{{1-{{tan}^2}\frac{α}{2}}}<0$,则α所在象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.数列{an}满足a1=$\frac{3}{2}$,an+1=a${\;}_{n}^{2}$-an+1(n∈N+),则m=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2008}}$的整数部分是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知2x=3y=5z,且x,y,z均为正数,则2x,3y,5z的大小关系为(  )
A.2x<3y<5zB.3y<2x<5zC.5z<3y<2xD.5z<2x<3y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设α,β是一个钝角三角形的两个锐角,下列四个不等式中的正确的个数是(  )
(1)cosα>sinβ
(2)$sinα+sinβ<\sqrt{2}$
(3)cosα+cosβ>1
(4)$\frac{1}{2}tan({α+β})<tan\frac{α+β}{2}$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若$π<θ<\frac{3π}{2}$,则$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2θ}}-\sqrt{1-sinθ}$=$cos\frac{θ}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知0<α<π,3sin2α=sinα,则cos(α-π)等于(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{1}{6}$D.-$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列0,3,8,15,24,…的一个通项公式an=n2-1.

查看答案和解析>>

同步练习册答案