精英家教网 > 高中数学 > 题目详情
11.已知{an}的通项an=23-n,则a1a2+a2a3+…+anan+1=(  )
A.$\frac{32}{3}$(1-4-nB.$\frac{32}{3}$(1-2-nC.16(1-4-nD.16(1-2-n

分析 an=23-n,可得anan+1=$\frac{32}{{4}^{n}}$,再利用等比数列的前n项和公式即可得出.

解答 解:∵an=23-n,∴anan+1=23-n•23-(n+1)=25-2n=$\frac{32}{{4}^{n}}$,
∴a1a2+a2a3+…+anan+1=$32(\frac{1}{4}+\frac{1}{{4}^{2}}+…+\frac{1}{{4}^{n}})$=$32×\frac{\frac{1}{4}(1-\frac{1}{{4}^{n}})}{1-\frac{1}{4}}$=$\frac{32}{3}(1-{4}^{-n})$.
故选:A.

点评 本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{e^x}{{{x^2}+2x+b}}$的定义域是R,且有极值点.
(Ⅰ)求实数b的取值范围;
(Ⅱ)求证:方程f(x)=$\frac{1}{2}$恰有一个实根.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若“x∈[-2,1]”是“x∈{x|x2-ax-4≤0|≤0}”的充分但不必要条件,则实数a的取值范围是[-3,0]•

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在区间[-3,5]上随机取一个实数a,则使函数f(x)=x2+2ax+4无零点的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图:四棱锥P-ABCD中,底面ABCD是边长为2的正方形,平面PCD⊥底面ABCD,且PC=PD=a.
(1)求证:PD⊥BC;
(2)当a的值为多少时满足PC⊥平面PAD?并求出此时该四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+ax2+bx+c的图象经过原点,且$1+\frac{{\sqrt{3}}}{3}$与$1-\frac{{\sqrt{3}}}{3}$是f′(x)=0的两个根.
(Ⅰ) 求a、b、c的值;
(Ⅱ)若方程f(x)=mx有三个互不相同的实根0,x1,x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)<m(x-1)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设y=f″(x)是y=f′(x)的导数.某同学经过探究发现,任意一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有对称中心(x0,f(x0)),其中x0满足f″(x0)=0.已知f(x)=$\frac{1}{3}{x^3}$-$\frac{1}{2}{x^2}+3x-\frac{5}{12}$,则$f(\frac{1}{2015})+f(\frac{2}{2015})+f(\frac{3}{2015})+…+f(\frac{2014}{2015})$=(  )
A.2012B.2013C.2014D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.甲乙两位同学约定早上7点至12点之间在某地会面,先到者等一个小时后即离去.设两人在这段时间内的各时刻到达是等可能的,且二人互不影响,则二人能会面的概率为$\frac{9}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知各项都是正数的数列{an}满足a1=$\frac{3}{2}$,an+1=$\frac{1}{2}{a}_{n}$(4-an),则数列{an}的通项公式是an=2-${2}^{1-{2}^{n}}$.

查看答案和解析>>

同步练习册答案