精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)同时满足下列条件:①周期为π;②定义域为R,值域为[
1
2
3
2
];③在[0,
π
2
]上是减函数;④f(x)-f(-x)=0,则满足上述要求的函数f(x)可以是
 
(写出一个即可).
考点:函数的周期性,函数奇偶性的判断
专题:函数的性质及应用
分析:根据余弦函数典型的性质,结合函数图象的变换规律求解.
解答: 解:∵f(x)=cosx的周期性为2π,在[0,
π
2
]上的单调递减,值域为[-1,1],定义域为R
∴想到通过图象的变换规律得到f(x)=
1
2
cos2x+1能够符合题意.
点评:本题是一个开放性题,能够综合考察函数的性质,与常见的函数解析式紧密结合,对学过的函数要熟练记忆理解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点是F1、F2,以|F1F2|为斜边作等腰直角三角形,若椭圆恰好平分三角形的另两边,则椭圆的离心率为(  )
A、
6
-
2
2
B、
5
+1
4
C、
10
-
2
2
D、
5
-1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程:x3-x=-
t
4
在[-1,t]上有且只有一个实根,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+(k+1)x+7有一根在[1,2]时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程lgx+x=3的解所在区间为(m,m+1)(m∈Z),则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为[0,1]的函数f(x),如果同时满足以下三个条件:
①对任意的x∈[0,1],总有f(x)≥0
②f(1)=1
③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立;则称函数f(x)为理想函数.
下面有三个命题:
若函数f(x)为理想函数,则f(0)=0;
函数f(x)=2x-1(x∈[0,1])是理想函数;
若函数f(x)是理想函数,假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,则f(x0)=x0
其中正确的命题个数有(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

若点M(x,y)为平面区域
x-2y+1≥0
x+y+1≥0
x≤0
上的一个动点,则x+2y的最大值是(  )
A、-1
B、-
1
2
C、0
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的单调函数,对?x∈R,f[f(x)-2x]=3恒成立,则f(3)=(  )
A、1B、3C、8D、9

查看答案和解析>>

同步练习册答案