精英家教网 > 高中数学 > 题目详情
8.在正方体ABCD-A1B1C1D1中,M为棱AB的中点,则直线B1M与BD1所成角的余弦值是$\frac{\sqrt{15}}{15}$.

分析 建立如图所示的坐标系,求出向量的坐标,利用向量方法,即可求出直线B1M与BD1所成角的余弦值.

解答 解:建立如图所示的坐标系,设正方体的棱长为2,则M(2,1,0),B1(2,2,2),B(2,2,0),D1(0,0,2),
∴$\overrightarrow{{B}_{1}M}$=(0,-1,-2),$\overrightarrow{B{D}_{1}}$=(-2,-2,2),
∴直线B1M与BD1所成角的余弦值是|$\frac{2-4}{\sqrt{5}•\sqrt{4+4+4}}$|=$\frac{\sqrt{15}}{15}$,
故答案为:$\frac{\sqrt{15}}{15}$.

点评 本题考查直线B1M与BD1所成角的余弦值,考查向量方法的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数y=f(x)与y=F(x)的图象关于y轴对称,当函数y=f(x)和y=F(x)在区间[a,b]同时递增或同时递减时,把区间[a,b]叫做函数y=f(x)的“不动区间”.若区间[1,2]为函数f(x)=|2x-t|的“不动区间”,则实数t的取值范围是(  )
A.(0,2]B.[$\frac{1}{2}$,+∞)C.[$\frac{1}{2}$,2]D.[$\frac{1}{2}$,2]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=$\left\{\begin{array}{l}{aln(x+1),x≥0}\\{\frac{1}{3}{x}^{3}-ax,x<0}\end{array}\right.$,g(x)=ex-1.
(1)若函数y=f(x)的图象在点(1,f(1))与点(-1,f(-1))处的切线相互垂直,求a的值;
(2)当a>0时,讨论函数f(x)与g(x)的图象公共点的个数;
(3)设数列${b_n}={e^{\frac{1}{n}}}({n∈N{^*}})$,其前n项和为Sn,证明:Sn>ln(n+1)+n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)为R上的减函数,则满足f($\frac{1}{|x|}$)<f(1)的实数x的取值范围是(-1,0)∪(0,1);.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\left\{\begin{array}{l}{x^4}+1,x<0\\{4^x}-1,x>0\end{array}\right.$,则方程f(x)=5的解集是(  )
A.{$-\sqrt{2}$,$\sqrt{2}$,log4 6}B.{$-\sqrt{2}$,log4 6}C.{$\sqrt{2}$,log4 6}D.{$-\sqrt{2}$,$\sqrt{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“x>0”是“$\frac{x}{x+1}$>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设命题p:关于x的一元二次不等式 ax2-x+$\frac{1}{16}$a>0的解集为R,命题q:方程$\frac{{x}^{2}}{15-a}-\frac{{y}^{2}}{a}$=1表示焦点在x轴上的双曲线.
(1)如果p是真命题,求实数a的取值范围;
(2)如果命题“p或q”为真命题,且“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题“?x0∈(0,+∞),lnx0>3-x0”的否定是(  )
A.“?x0∈(0,+∞),lnx0≤3-x0B.?x∈(0,+∞),lnx>3-x
C.?x∈(0,+∞),lnx<3-xD.?x∈(0,+∞),lnx≤3-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某台风中心位于A港口东南方向的B处,且台风中心与A港口的距离为400$\sqrt{2}$千米.预计台风中心将以每小时40千米的速度向正北方向移动,离台风中心500千米的范围都会受到台风影响,则A港口从受到台风影响到影响结束,将持续15小时.

查看答案和解析>>

同步练习册答案