精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f(
2013
2
)
的值是(  )
A、
2013
2
B、1
C、
2015
2
D、0
考点:抽象函数及其应用
专题:函数的性质及应用
分析:由xf(x+1)=(1+x)f(x)结构来看,选用递推的方法,用赋值法依次求出f(
1
2
)=0,f(
3
2
)=0.f(
5
2
)=0,f(
7
2
)=0,于是可以找到规律,问题得以解决.
解答: 解:∵xf(x+1)=(1+x)f(x),
令x=-
1
2

-
1
2
f(-
1
2
+1)=(1-
1
2
)f(-
1
2
),
∴f(
1
2
)=0,
同理可求 f(
3
2
)=0,f(
5
2
)=0,f(
7
2
)=0,
由以上可得f(
x
2
)=0,x∈2n+1.n∈N,
所以f(
2013
2
)
=0.
故选:D.
点评:本题主要考查抽象函数用递推的方法求函数值,这类问题关键是将条件和结论有机地结合起来,作适当变形,把握递推的规律.解题中要注意函数奇偶性的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若方程x2-11x+m-2=0的两实数根都大于1,则m取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=3x2+2(1-a)x-a(a+2)在区间(-1,1)内存在零点,则a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是椭圆
x2
25
+
y2
5
=1上一点,F1,F2是椭圆的两个焦点,
PF1
PF2
=0,则△F1PF2面积是(  )
A、5B、10C、8D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

以下命题:
(1)z-
.
z
是纯虚数        
(2)z1+z2∈R?z1=
.
z2
   
(3)z1-z2>0?z1>z2
(4)z∈R?z=
.
z
          
(5)z为纯虚数?z+
.
z
=0
其中正确命题的个数是(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的前n项和为Sn,且满足
S4
S2
=5,则公比q=(  )
A、±
1
2
B、
1
2
C、±2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,且x≥0时f(x)的图象如图所示,则f(-2)=(  )
A、-3B、-2C、-1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某程序框图如图所示,则执行该程序后输出的结果是(  )
A、-1
B、
1
2
C、2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

经过两直线l1:2x-3y+2=0与l2:3x-4y-2=0的交点,且平行于直线4x-2y+7=0的直线方程是(  )
A、x-2y+9=0
B、4x-2y+9=0
C、2x-y-18=0
D、x+2y+18=0

查看答案和解析>>

同步练习册答案