精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=lnx-mx(m为常数),讨论函数f(x)的单调区间.

分析 求出函数的定义域,求出f(x)的导数,通过讨论m的范围,求出函数的单调区间即可.

解答 解:f(x)的定义域是(0,+∞),
f′(x)=$\frac{1}{x}$-m=-$\frac{m(x-\frac{1}{m})}{x}$,
m>0时,令f′(x)>0,解得:x<$\frac{1}{m}$,
∴当x∈(0,$\frac{1}{m}$)时,f′(x)>0,当x∈($\frac{1}{m}$,+∞)时,f′(x)<0,
∴函数f(x)的单调增区间是(0,$\frac{1}{m}$),单调递减区间是($\frac{1}{m}$,+∞);
m≤0时,f′(x)>0,
∴f(x)在(0,+∞)递增.

点评 本题考查了函数的单调性问题,考查导数的应用,分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.三个数a,b,c成等差数列,其和为15,且3b-6a=c,求这三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知递增等差数列{an}的前n项和为Sn,a1=1,且a2+1,a4+1,S4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{a_n}{{{a_{n+1}}}}+\frac{{{a_{n+1}}}}{a_n}$-2,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“-1<m<1”是“圆(x-1)2+(y-m)2=5被x轴截得的弦长大于2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合U={-1,0,1,2},A={-1,1,2},则∁UA={0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=cos2x+$\sqrt{3}$sinxcosx,
命题p:?x0∈R,f(x0)=-1,
命题q:?x∈R,f(2π+x)=f(x),
则下列命题中为假命题的是(  )
A.p∨qB.p∧qC.¬p∧qD.¬p∨¬q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.大学生村官王善良落实政府“精准扶贫”,帮助贫困户张三用9万元购进一部节能环保汽车,用于出租,假设第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该车每年的运营收入均为11万元,若该车使用了n(n∈N*)年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则n等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)的导函数f′(x)的图象如图所示.则(  )
A.x=1是最小值点B.x=0是极小值点
C.x=2是极小值点D.函数f(x)在(1,2)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某工艺厂有铜丝5万米,铁丝9万米,准备用这两种材料编制成花篮和花盆出售.已知编制一只花篮需要铜丝200米,铁丝300米;编制一只花盆需要铜丝100米,铁丝300米.设该厂用所有原料编制x个花篮,y个花盆.
(1)列出x、y满足的关系式,并画出相应的平面区域;
(2)若出售一个花篮可获利300元,出售一个花盆可获利200元,那么怎样安排花篮和花盆的编制个数,可使所得利润最大,最大利润是多少?

查看答案和解析>>

同步练习册答案