精英家教网 > 高中数学 > 题目详情
11.设集合A={x|x2+x-6≤0},集合B为函数$y=\frac{1}{{\sqrt{x-1}}}$的定义域,则A∩B=(  )
A.(1,2)B.[1,2]C.[1,2)D.(1,2]

分析 根据函数成立的条件,求出函数的定义域B,根据不等式的性质求出集合A,然后根据并集的定义即可得到结论.

解答 解:A={x|x2+x-6≤0}={x|-3≤x≤2}=[-3,2],
要使函数y=$\frac{1}{\sqrt{x-1}}$有意义,则x-1>0,即x>1,
∴函数的定义域B=(1,+∞),
则A∩B=(1,2],
故选:D.

点评 本题主要考查集合的基本运算,利用函数成立的条件求出函数的定义域y以及利用不等式的解法求出集合A是解决本题的关键,比较基础

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知抛物线C:x2=2py(p>0)的焦点为F,直线2x-y+2=0 交抛物线C于A、B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.
(1)若直线AB过焦点F,求|AF|•|BF|的值;
(2)是否存在实数p,使△ABQ是以Q为直角顶点的直角三角形?若存在,求出p的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设方程$\frac{x^2}{m}$+$\frac{y^2}{n}$=1表示焦点在x轴上的椭圆.
(1)若椭圆的焦距为1,离心率为$\frac{1}{2}$,求椭圆的方程;
(2)设m+n=1,F1,F2分别是椭圆的左、右焦点,P为椭圆上的第一象限内的点,直线F2P交y轴与点Q,并且$\overrightarrow{{F}_{1}P}$⊥$\overrightarrow{{F}_{1}Q}$,证明:当m,n变化时,点P在某定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定义在R上的奇函数f(x),当x≥0时,f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x∈[0,1]}\\{(x-2)^{2},x∈(1,+∞)}\end{array}\right.$,若f(x)在区间[-a,a]上单调递增,则a的取值范围为(  )
A.(-∞,1]B.[1,+∞)C.(0,1]D.(-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.?ABCD三个顶点的坐标分别为A(2,-3),B(-2,4),C(-6,-1).求:
(1)直线AD与直线CD的方程;
(2)D点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知复数z1,z2满足|z1|≤1,-1≤Rez2≤1,-1≤Imz2≤1,若z=z1+z2,则z在复平面上对应的点组成的图形的面积为12+π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设计一个算法,计算两个正整数a,b的最小公倍数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)经过点$M(1,\frac{{\sqrt{2}}}{2})$,且其离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)若F为椭圆C的右焦点,椭圆C与y轴的正半轴相交于点B,经过点B的直线与椭圆C相交于另一点A,且满足$\overrightarrow{BA}•\overrightarrow{BF}=2$,求△ABF外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆Γ:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点F2的坐标为(c,0),若b=c,且点(c,l)在椭圆Γ上.
(I)求椭圆Γ的标准方程;
(Ⅱ)当k≠0时,若直线l1:y=k(x+$\sqrt{2}$),l2:y=-$\frac{1}{k}$(x+$\sqrt{2}$)与椭圆Γ的交点分别为A,B和C,D,记四边形ACBD的面积为S1
①求S1关于k的表达式;
②若直线l3:$\sqrt{2}$kx-y+k=0,l4:$\sqrt{2}$x+ky+1=0与圆E:x2+y2=1的交点分别为M,N和P,Q,记四边形MNPQ的面积为S2,试判断$\frac{S_1}{S_2}$是否为定值?若是,求出该定值,若不是,请说明.

查看答案和解析>>

同步练习册答案